Home
Class 11
MATHS
If A+B+C=pi/2 prove the following (i) ...

If `A+B+C=pi/2` prove the following
(i) `sin 2A+sin 2B +sin 2C=4 cos A cos B cos C`
(ii) `cos 2A +cos 2B+cos 2C=1+4 sin A sin B sin C.`

Text Solution

Verified by Experts

The correct Answer is:
`1+4 sin A sin B sin C`
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRY

    FULL MARKS|Exercise Exercise 3.8|3 Videos
  • TRIGONOMETRY

    FULL MARKS|Exercise Exercise 3.9|11 Videos
  • TRIGONOMETRY

    FULL MARKS|Exercise Exercise 3.6|14 Videos
  • SOLVED PAPER 10

    FULL MARKS|Exercise PART-IV|8 Videos
  • TWO DIMENSIONAL ANALYTICAL GEOMETRY

    FULL MARKS|Exercise Additional Questions Solved|19 Videos

Similar Questions

Explore conceptually related problems

If A + B + C = (pi)/(2) , prove that sin 2A + sin 2B + sin 2C = 4 cos A cos B cos C

Prove that a cos A + b cos B + c cos C = 4 R sin A sin B sin C.

If A + B + C = 180^(@) , prove that sin 2A + sin 2B + sin 2C = 4 sin A sin B sin C

If A + B + C = (pi)/(2) , prove that cos 2A + cos 2B + cos 2C = 1 + 4 sin A sin B cos C

If A + B + C = 180^(@) , prove that sin^(2)A + sin^(2)B + sin^(2) C = 2 + 2 cos A cos B cos C

Prove that cos (A + B) cos C - cos (B + C) cos A = sin B sin (C - A)

Prove that sin (A+B)= sin A cos B + cos A sin B.

If A + B + C = 180^(@) , prove that sin A + sin B + sin C = 4 cos (A)/(2) cos"" (B)/(2) cos"" (C )/(2)