Home
Class 11
MATHS
If triangleABC is a right triangle and i...

If `triangleABC` is a right triangle and if `angleA=pi/2`, then prove that
(i) `cos^(2) B+cos^(2)C=1`
(ii) `sin^(2) B+sin^(2) C=1`
`cos B-cos C=-1+2 sqrt2 cos""B/2sin ""C/2`

Text Solution

Verified by Experts

The correct Answer is:
`-sqrt2 sin ((B-C))/(2)`
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRY

    FULL MARKS|Exercise Exercise 3.8|3 Videos
  • TRIGONOMETRY

    FULL MARKS|Exercise Exercise 3.9|11 Videos
  • TRIGONOMETRY

    FULL MARKS|Exercise Exercise 3.6|14 Videos
  • SOLVED PAPER 10

    FULL MARKS|Exercise PART-IV|8 Videos
  • TWO DIMENSIONAL ANALYTICAL GEOMETRY

    FULL MARKS|Exercise Additional Questions Solved|19 Videos

Similar Questions

Explore conceptually related problems

If Delta ABC is right triangle and if angleA = (pi)/(2) , then prove that cos^(2)B + cos^(2)C = 1

If Delta ABC is right triangle and if angleA = (pi)/(2) , then prove that sin^(2) B + sin^(2)C = 1

If Delta ABC is right triangle and if angleA = (pi)/(2) , then prove that cos B - cos C = -1 + 2 sqrt(2) cos"" (B)/(2) sin"" (C )/(2) .

Prove that cos (A + B) cos (A - B) = cos^(2) B - sin^(2) A

Prove that cos (A + B) cos (A - B) = cos^(2) A - sin^(2) B = cos^(2) B- sin^(2) A

Prove that sin (A+B) sin (A-B)=cos^(2) B-cos^(2) A

If A+B+C=pi prove that cos^(2) A+cos^(2) B+cos^(2) C=1 - 2cos A cos B cos C .

In a Delta ABC, prove that a ( cos B + cos C) = 2 (b + c) sin^(2)""(A)/(2)

Prove that sin^2 A cos^2 B+cos^2 A sin^2 B+cos^2 A cos^2 B+sin^2 A sin^2 B=1