Home
Class 11
MATHS
In a triangleABC, prove that following ...

In a `triangleABC`, prove that following
(i) ` a sin (A/2+B)=(b+c) sin ""A/2` (ii) `a(cos B+cos C)=2(b+c)sin^(2)"" A/2`
(iii) `(a^(2)-c^(2))/(b^(2))=(sin (A-C))/(sin (A+C))` (iv) `(a sin (B-C))/(b^(2)-c^(2))=(b sin (C-A))/(c^(2)-a^(2))=(c sin (A-B))/(a^(2)-b^(2))`

Text Solution

Verified by Experts

The correct Answer is:
(i) `(b+c) sin""A/2` (ii) `2(b+c) sin^(2)""A/2` (iii) `(sin(A-C))/(sin (A+C))` (iv) `tan((A+B)/(2)) cot ((A-B)/(2))`
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRY

    FULL MARKS|Exercise Exercise 3.10|16 Videos
  • TRIGONOMETRY

    FULL MARKS|Exercise Exercise 3.11|2 Videos
  • TRIGONOMETRY

    FULL MARKS|Exercise Exercise 3.8|3 Videos
  • SOLVED PAPER 10

    FULL MARKS|Exercise PART-IV|8 Videos
  • TWO DIMENSIONAL ANALYTICAL GEOMETRY

    FULL MARKS|Exercise Additional Questions Solved|19 Videos

Similar Questions

Explore conceptually related problems

In a Delta ABC, prove that (a sin(B - C))/(b^(2) - c^(2)) = (b sin (C - A))/(c^(2) - a^(2)) = (c sin (A - B))/(a^(2) - b^(2))

In a triangle ABC, prove that b^(2) sin 2C+c^(2) sin 2B=2bc sin A .

In a triangleABC, " prove that "(sin B)/(sin C)=(c-a cos B)/(b-a cos C)

In a Delta ABC, prove that a sin ((A)/(2) + B) = (b + c) sin ""(A)/(2)

In a triangleABC," prove that sin" ((B-C)/(2))=(b-c)/(a) cos""A/2 .

In a triangleABC, prove that a cos A+b cos B+c cos C=2a sin B sin C

In a Delta ABC, prove that (a^(2) - c^(2))/(b^(2)) = (sin (A - C))/(sin(A + C))

In any triangle prove that a^2 =(b+c)^2 sin^2 (A/2) +(b-c)^2 cos^2 (A/2)

Prove that sin (A+B) sin (A-B)=cos^(2) B-cos^(2) A