Home
Class 12
MATHS
If xe^(xy)-y=sin^(2)x then (dy)/(dx) at ...

If `xe^(xy)-y=sin^(2)x` then `(dy)/(dx)` at x = 0 is

Promotional Banner

Similar Questions

Explore conceptually related problems

If xe^(xy) + ye^(-xy) = sin ^(2) x , then (dy)/(dx) at x =0 is a) 2y^(2) -1 b) 2y c) y^(2) -y d) y^(2) -1

If x e^(xy)+y=sin^2x , then find (dy)/(dx) at x=0.

If xe^(xy)=y+sin^(2)x then at x=0(dy)/(dx)=

If xe^(xy)=y+sin^2x then at x=0 (dy)/dx=

If xe^(xy)=y+sin^2x then at x=0 (dy)/dx=

If cos (xy) =sin (x+y) ,then (dy)/(dx)

If (xe)^(y)=e^(x) , then (dy)/(dx) is

If y=xe^(xy) , then (dy)/(dx) =

If sin^(2)x+2cos y+xy=0 then (dy)/(dx)=

If ye ^(x) +xe^(y) =1 ,then (dy)/(dx) =