Home
Class 12
MATHS
If for z as real or complex . (1+z^(...

If for z as real or complex .
` (1+z^(2) + z^(4))^(8) = C_(0) C_(1) z^(2) C_(2) z^(4) + …+ C_(16) z^(32)` ,
prove that
`C_(0) + C_(3) + C_(6) + C_(9) + C_(12) + C_(15)`
` + (C_(2) + C_(5) + C_(8) + C_(11) + C_(14))`
` + (C_(1) + C_(4) + C_(7) + C_(10) + C_(16)) omega^(2) = 0 ` ,
where `omega` is a cube root of unity .

Promotional Banner

Similar Questions

Explore conceptually related problems

If for z as real or complex such that (1+z^(2) + z^(4))^(8) = C_(0)+ C_(1) z^(2) +C_(2) z^(4) + …+ C_(16) z^(32) , prove that C_(0) + C_(3) + C_(6) + C_(9) + C_(12) + C_(15) + (C_(2) + C_(5) + C_(8) + C_(11) + C_(14)) omega + (C_(1) + C_(4) + C_(7) + C_(10) + C_(16)) omega^(2) = 0 , where omega is a cube root of unity .

If for z as real or complex, (1+z^2+z^4)^8=C_0+C_1z^2+C_2z^4+...+C_(16)z^(32) then prove that C_(0) - C_(1) + C_(2) - C_(3) + "….." + C_(16) = 1 and C_(0) + C_(3) + C_(6) + C_(12) + C_(15) = 3^(7)

If for z as real or complex, (1+z^2+z^4)^8=C_0+C1z^2+C2z^4++C_(16)z^(32)t h e n

If for z as real or complex,(1+z^(2)+z^(4))^(8)=C_(0)+C1z2+C2z4++C_(16)z^(32)then(a)C_(0)-C_(1)+C_(2)-C_(3)+C_(16)=1(b)C_(0)+C_(3)+C_(6)+C_(9)+C_(12)+C_(15)=3^(7)(c)C_(2)+C_(5)+C_(6)+C_(11)+C_(14)=3^(6)(d)C_(1)+C_(4)+C_(7)+C_(10)+C_(13)+C_(16)=3^(7)

If for z as real or complex, (1+z^2+z^4)^8=C_0+C1z2+C2z4++C_(16)z^(32)t h e n (a) C_0-C_1+C_2-C_3++C_(16)=1 (b) C_0+C_3+C_6+C_9+C_(12)+C_(15)=3^7 (c) C_2+C_5+C_6+C_(11)+C_(14)=3^6 (d) C_1+C_4+C_7+C_(10)+C_(13)+C_(16)=3^7

If for z as real or complex, (1+z^2+z^4)^8=C_0+C1z2+C2z4++C_(16)z^(32)t h e n (a) C_0-C_1+C_2-C_3++C_(16)=1 (b) C_0+C_3+C_6+C_9+C_(12)+C_(15)=3^7 (c) C_2+C_5+C_6+C_(11)+C_(14)=3^6 (d) C_1+C_4+C_7+C_(10)+C_(13)+C_(16)=3^7

Consider the system of equations a_(1) x + b_(1) y + c_(1) z = 0 a_(2) x + b_(2) y + c_(2) z = 0 a_(3) x + b_(3) y + c_(3) z = 0 If |(a_(1),b_(1),c_(1)),(a_(2),b_(2),c_(2)),(a_(3),b_(3),c_(3))| =0 , then the system has

Consider the system of equations a_(1) x + b_(1) y + c_(1) z = 0 a_(2) x + b_(2) y + c_(2) z = 0 a_(3) x + b_(3) y + c_(3) z = 0 If |(a_(1),b_(1),c_(1)),(a_(2),b_(2),c_(2)),(a_(3),b_(3),c_(3))| =0 , then the system has

If a , b , c in R such that a + b + c= 0 and az_(1) + bz_(2) + cz_(3) = 0 then z_(1) , z_(2) , z_(3) are

Show that |^x C_r^x C_(r+1)^x C_(r+2)^y C_r^y C_(r+1)^y C_(r+2)^z C_r^z C_(r+1)^z C_(r+2)|=|^x C_r^(x+1)C_(r+1)^(x+2)C_(r+2)^y C_r^(y+1)C_(r+1)^(y+2)C_(r+2)^z C_r^(z+1)C_(r+1)^(z+2)C_(r+2)| .