Home
Class 12
MATHS
The coefficient of cos ^(3) theta in the...

The coefficient of `cos ^(3) theta` in the expansion of `cos 7theta` in powers of `cos theta` is-

Promotional Banner

Similar Questions

Explore conceptually related problems

( cos 3 theta - sin 3 theta )/( cos theta+ sin theta ) =

Simplify: (sin^(3) theta + cos^(3) theta)/(sin theta + cos theta) + sin theta cos theta

Prove that, 64cos^(3) theta sin^(4) theta = cos 7 theta - cos 5 theta - 3 cos 3theta+3 cos theta

64cos^(3)theta sin^(4)theta=cos7 theta-cos5 theta-3cos3 theta+3cos theta

64cos^(3)theta sin^(4)theta=cos7 theta-cos5 theta-3cos3 theta+3cos theta

3. sin^(3)theta+cos^(3)theta=(sin theta+cos theta)(1-sin theta cos theta)

Prove that: (sin^(3) theta + cos^(3) theta)/(sin theta + cos theta) = 1-sin theta cos theta

(sin theta+cos theta)(1-sin theta cos theta)=sin^3 theta+cos^3 theta

(sin theta + cos theta)/(sin theta - cos theta) + (sin theta - cos theta)/(sin theta + cos theta)= ________

( sin 3 theta )/( sin theta ) -(cos 3 theta )/( cos theta )=