Home
Class 11
MATHS
Using the principle of mathematical ind...

Using the principle of mathematical induction, prove that
`(1-1/2)(1-1/3)(1-1/4)...(1-1/(n+1))= 1/((n+1))" for all " n in N`.

Promotional Banner

Similar Questions

Explore conceptually related problems

Using the principle of mathematical induction, prove that 1/(1*2)+1/(2*3)+1/(3*4)+…+1/(n(n+1)) = n/((n+1)) .

Using the principle of mathematical induction, prove that 1/(1*2)+1/(2*3)+1/(3*4)+…+1/(n(n+1)) = n/((n+1)) .

Use principle of mathematical induction to prove that (1+(3)/(1))(1+(5)/(4))...(1+(2n+1)/(n^(2)))=(n+1)^(2)

Using the principle of mathematical induction, prove that : 1. 2. 3+2. 3. 4++n(n+1)(n+2)=(n(n+1)(n+2)(n+3))/4^ for all n in N .

Using the principle of mathematical induction, prove that : 1. 2. 3+2. 3. 4++n(n+1)(n+2)=(n(n+1)(n+2)(n+3))/4^ for all n in N .

Using principle of mathematical induction, prove that 1 + 3 + 3^(2) + … 3^(n-1) = (3^(n) - 1)/(2)

Prove the following by using the Principle of mathematical induction AA n in N (1-(1)/(2))(1-(1)/(3)) (1-(1)/(4))…….(1-(1)/(n+1))=(1)/(n+1)

Using the principle of mathematical induction prove that (1)/(1.2.3)+(1)/(2.3.4)+(1)/(3.4.5)+...+(1)/(n(n+1)(n+2))=(n(n+3))/(4(n+1)(n+2) for all n in N

Using mathematical induction prove that 1/(1.4)+1/(4.7)+1/(7.10)+.......+1/((3n-2)(3n+1))=n/(3n+1) for all n in N