Home
Class 11
MATHS
If z(1) = (1+i) and z(2) = (-2 + 4i), pr...

If `z_(1) = (1+i) and z_(2) = (-2 + 4i)`, prove that Im `((z_(1)z_(2))/(bar(z)_(1)))=2`.

Promotional Banner

Similar Questions

Explore conceptually related problems

if z_(1)=1-i and z_(2) = -2 + 4i then find Im((z_(1)z_(2))/barz_(1))

if z_(1)=1-i and z_(2) = -2 + 4i then find Im((z_(1)z_(2))/barz_(1))

if z_(1) and z_(2) are 1-i,-2+4i respectively find Im((z_(1)z_(2))/(bar(z)_(1)))

If z_(1) and z_(2) are 1 - i, -2 + 4i then find Im ((z_(1) z_(2))/(bar(z_(1)))) .

If z_(1)= 3 + 5i and z_(2)= 2- 3i , then verify that bar(((z_(1))/(z_(2))))= (bar(z)_(1))/(bar(z)_(2))

If z_(1) = 3+ 2i and z_(2) = 2-i then verify that (i) bar(z_(1) + z_(2)) = barz_(1) + barz_(2)

If z_(1) = 3+ 2i and z_(2) = 2-i then verify that (i) bar(z_(1) + z_(2)) = barz_(1) + barz_(2)

If z_(1), z_(2) are 1-i, -2 + 4i respectively, find I_(m)((z_(1)z_(2))/(bar(z_(1)))) .

if z_(1)=2-i, and z_(2) = 1+ i, then find Im(1/(z_(1)z_(2)))

If z_(1)=-3+4i and z_(2)=12-5i, "show that", bar(z_(1)+z_(2))=bar(z_(1))+bar(z_(2))