Home
Class 12
MATHS
If G(x)=-sqrt(25-x). Then lim(xrarr1) (G...

If `G(x)=-sqrt(25-x)`. Then `lim_(xrarr1) (G(x)-G(1))/(x-1)` has the value

Promotional Banner

Similar Questions

Explore conceptually related problems

If G(x)=-sqrt(25-x^(2)) , then lim_(xrarr1) (G(x)-G(1))/(x-1)=?

If G(x) = -sqrt(25-x^(2)) the lim_(x rarr 1) (G(x)-G(1))/(x-1) =

If G(x) = -sqrt(25-x^2) then lim_(x to 1) (G(x)-G(1))/(x-1) = ?

If g(x) = -sqrt(25-x^(2)) the lim_(x rarr 1) (g(x)-g(1))/(x-1) =

If G(x)=(1)/(sqrt(25-x^(2))) , then lim_(xto4)(G(x)-G(4))/(x-4) has the value :

If G(x)=-sqrt(25-x^(2)), then lim_(x rarr1)(G(x)-G(1))/(x-1)is (a) (1)/(24) (b) (1)/(5)(c)-sqrt(24) (d) none of these

lim_(xrarr1)(x^2+3x-4)/(x-1)=?

Given that lim_(x to oo ) ((2+x^(2))/(1+x)-Ax-B)=3 If G(x)=sqrt(25-x^(2)) then what is lim_(xto1) (G(x)-G(1))/(x-1) equal to?