Home
Class 12
MATHS
Number of critical point of the function...

Number of critical point of the function f(X) =x+`sqrt(|x|)` is _______.

Promotional Banner

Similar Questions

Explore conceptually related problems

The number of critical points of the function f(x)=|x-1||x-2| is

The number of critical points of the function f(x)=|x|e^(-x) must be

The critical points of the function f(x)=|x-1|/x^2 are

The number of cirtical points of the function f(x)=|x|e^(-x) must be

Find the number of critical points of the function f(x) = |x - 2| + |x +1 | , x in R

Find the number of critical points of the function f (x) = min (tan x , cos x) , x in (0 , pi)

Number of critical points of the function. f(x)=(2)/(3)sqrt(x^(3))-(x)/(2)+int_(1)^(x)((1)/(2)+(1)/(2)cos2t-sqrt(t)) dt which lie in the interval [-2pi,2pi] is………. .

Number of critical points of the function. f(x)=(2)/(3)sqrt(x^(3))-(x)/(2)+int_(1)^(x)((1)/(2)+(1)/(2)cos2t-sqrt(t)) dt which lie in the interval [-2pi,2pi] is………. .

Number of critical points of the function. f(x)=(2)/(3)sqrt(x^(3))-(x)/(2)+int_(1)^(x)((1)/(2)+(1)/(2)cos2t-sqrt(t)) dt which lie in the interval [-2pi,2pi] is………. .

Find the number of critical points of the function f (x) = - (3)/(4) x^(4) - 8x^(3) - (45)/(2) x^(2) + 105 , x in R