Home
Class 12
MATHS
The value of the determinant |{:(1,sin(...

The value of the determinant `|{:(1,sin(alpha-beta)theta,cos (alpha-beta)theta),(a, sinalphatheta,cos alphatheta),(a^(2),sin(alpha-beta)theta,cos(alpha-beta)theta):}|` is independent of

Promotional Banner

Similar Questions

Explore conceptually related problems

Show that cos^(2)theta+cos^(2)(alpha+theta)-2cos alpha cos theta cos (alpha+beta) is independent of theta .

s(theta-alpha)=a and cos(theta-beta)=b, then sin^(2)(alpha-beta)+2ab cos(alpha-beta)=

If cos(theta-alpha)=a,sin(theta-beta)=b, prove that a^(2)-2ab sin(alpha-beta)+b^(2)=cos^(2)(alpha-beta)

If cos(theta - alpha)=a, cos(theta-beta)=b , then sin^(2)(alpha -beta) + 2abcos(alpha-beta)=0

sin(theta+alpha)=a sin(theta+beta)=b(0

If cos(theta-alpha)=a , sin(theta-beta)=b then cos^2(alpha-beta)+2 ab sin(alpha-beta) is equal to

alpha& beta are solutions of a cos theta+b sin theta=c(cos alpha!=cos beta)&(sin alpha!=sin beta) Then tan((alpha+beta)/(2))=?

If tan beta=cos theta tan alpha , then prove that tan^(2)""(theta)/(2)=(sin(alpha-beta))/(sin(alpha+beta)) .