Home
Class 12
MATHS
If alpha, beta, gamma are the roots of x...

If `alpha, beta, gamma` are the roots of `x^3+px^2+qx+r=0` then `alpha^(2)(beta+gamma)+beta^(2)(gamma+alpha)+gamma^(2)(alpha+beta)=`

Promotional Banner

Similar Questions

Explore conceptually related problems

If alpha , beta , gamma are the roots of x^3 + px^2+qx -r=0 then alpha^2 + beta^2 + gamma^2 =

If alpha , beta , gamma are the roots of x^3 + px^2+qx -r=0 then alpha^2 + beta^2 + gamma^2 =

If alpha, beta, gamma are the roots of x^(3)-px^(2)+qx-r=0 then (alpha+beta)(beta+gamma)(gamma+alpha) =

If alpha, beta, gamma are roots of x^(3) - px^(2) + qx - r = 0 then sum alpha^(2) (beta + gamma) =

If alpha,beta,gamma are the roots of x^(3)+px^(2)+qx+r=0 then alpha^(3)+beta^(3)+gamma^(3)=

If alpha, beta , gamma are the roots of x^(3) - px^(2) + qx - r = 0 then alpha^(2) + beta^(2) + gamma^(2) =

If alpha,beta,gamma are the roots of x^(3)+ px^(2)+qx + r=0, then alpha^(3) + beta^(3) + gamma^(3)=

If alpha, beta,gamma are roots of x^(3) - px^(2) + qx - r = 0 then sum alpha (beta + gamma) =

If alpha, beta,gamma are roots of x^(3) - px^(2) + qx - r = 0 then alpha^(3) beta^(3) gamma^(3) =