Home
Class 12
MATHS
Prove that a necessary and sufficient...

Prove that a necessary and sufficient condition for three vectors ` vec a , vec b` and ` vec c` to be coplanar is that there exist scalars `l , m , n` not all zero simultaneously such that `l vec a+m vec b+n vec c= vec0dot`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that a necessary and sufficient condition for three vectors vec a,vec b and vec c to be coplanar is that there exist scalars l,m,n not all zero simultaneously such that lvec a+mvec b+nvec c=vec 0

Prove that the necessary and sufficient condition for three vectors veca,vecb and vecc to be coplanar is that there exist scalars l,m,n (not all zero simultaneously) such that lveca+mvecb+nvecc=vec0 .

Show that the vectors vec a, vec b and vec c are coplanar if vec a + vec b, vec b + vec c, vec c+ vec a are coplanar.

Show that the vectors vec a,vec b and vec c are coplanar if vec a+vec b,vec b+vec c and vec c+vec a are coplanar.

Show that the vectors vec a,vec b and vec c are coplanar if vec a+vec b,vec b+vec c and vec c+vec a are coplanar.

Show that the vectors vec a , vec b and vec c are coplanar if vec a+ vec b , vec b+ vec c and vec c+ vec a are coplanar.

Show that vectors vec a ,\ vec b ,\ vec c are coplanar if vec a+ vec b ,\ vec b+ vec c ,\ vec c+ vec a are coplanar.

Show that vectors vec a ,\ vec b ,\ vec c are coplanar if vec a+ vec b ,\ vec b+ vec c ,\ vec c+ vec a are coplanar.

If vectors vec a , vec b ,a n d vec c are coplanar, show that | vec a vec b vec c vec adot vec a vec adot vec b vec adot vec c vec bdot vec a vec bdot vec b vec bdot vec c|=0

If vec a xxvec b=vec b xxvec c!=0, where vec a,vec b and vec c are coplanar vectors,then for some scalar k