Home
Class 12
MATHS
I1=int0^(pi/2)(sinx-cosx)/(1+sinxcosx)dx...

`I_1=int_0^(pi/2)(sinx-cosx)/(1+sinxcosx)dx ,I_2=int_0^(2pi)cos^6xdx ,I_3=int_(pi/2)^(pi/2)sin^3xdx ,I_4=int_0^1 1n(1/x-1)dxdotT h e n` `I_2=I_3=I_4=0,I_1!=0` `I_1=I_2=I_3=0,I_4!=0` `I_1=I_2=I_3=0,I_4!=0` `I_1=I_2=I_3=0,I_4!=0`

Promotional Banner

Similar Questions

Explore conceptually related problems

I_1=int_0^(pi/2)(sinx-cosx)/(1+sinxcosx)dx ,I_2=int_0^(2pi)cos^6xdx , I_3=int_(-pi/2)^(pi/2)sin^3xdx ,I_4=int_0^1 1n(1/x-1)dxdot Then

I_1=int_0^(pi/2)(sinx-cosx)/(1+sinxcosx)dx ,I_2=int_0^(2pi)cos^6xdx ,I_3=int_(pi/2)^(pi/2)sin^3xdx ,I_4=int_0^1 1n(1/x-1)dxdotT h e n I_2=I_3=I_4=0,I_1!=0 I_1=I_2=I_3=0,I_4!=0 I_1=I_2=I_3=0,I_4!=0 I_1=I_4=I_3=0,I_2!=0

I_1=int_0^(pi/2)(sinx-cosx)/(1+sinxcosx)dx ,I_2=int_0^(2pi)cos^6xdx ,I_3=int_(pi/2)^(pi/2)sin^3xdx ,I_4=int_0^1 1n(1/x-1)dxdotT h e n I_2=I_3=I_4=0,I_1!=0 I_1=I_2=I_3=0,I_4!=0 I_1=I_2=I_3=0,I_4!=0 I_1=I_4=I_3=0,I_2!=0

I_(1)=int_(0)^((pi)/2)(sinx-cosx)/(1+sinxcosx)dx, I_(2)=int_(0)^(2pi)cos^(6)dx , I_(3)=int_(-(pi)/2)^((pi)/2)sin^(3)xdx, I_(4)=int_(0)^(1) In (1/x-1)dx . Then

I_(1)=int_(0)^((pi)/2)(sinx-cosx)/(1+sinxcosx)dx, I_(2)=int_(0)^(2pi)cos^(6)dx , I_(3)=int_(-(pi)/2)^((pi)/2)sin^(3)xdx, I_(4)=int_(0)^(1) In (1/x-1)dx . Then

I_(1)=int_(0)^((pi)/(2))(sin x-cos x)/(1+sin x cos x)dx,I_(2)=int_(0)^(2 pi)cos^(6)xdx,I_(3)=int_((pi)/(2))^((pi)/(2))sin^(3)xdx,I_(4)=int_(0)^(1)1n((1)/(x)-1)dx. Then I_(1)=I_(3)=I_(4)=0,I_(1)!=0I_(1)=I_(3)=0,I_(4)!=0I_(1)=I_(2)=0,I_(4)!=0I_(1)=I_(2)=I_(3)=0,I_(4)!=0

If I_1=int_0^(pi/2)f(sinx)sinxdx and I_2=int_0^(pi/2)f(cosx)cosxdx then I_1/I_2

If I_1=int_0^(pi/2)f(sinx)sinxdx and I_2=int_0^(pi/2)f(cosx)cosxdx then I_1/I_2

Suppose I_1=int_0^(pi/2)cos(pisin^2x)dx and I_2=int_0^(pi/2)cos(2pisin^2x)dx and I_3=int_0^(pi/2) cos(pi sinx)dx , then