Home
Class 11
MATHS
For |z-1|=1, show that tan{[a r g(z-1)]/...

For `|z-1|=1,` show that `tan{[a r g(z-1)]/2}-((2i)/z)=-i`

Promotional Banner

Similar Questions

Explore conceptually related problems

For |z-1|=1, show that tan{(arg(z-1))/(2)}-((2i)/(z))=-i

For |z-1|=1 , i tan(("arg"(z-1))/(2))+(2)/(z) is equal to ________

For |z-1|=1 , i tan(("arg"(z-1))/(2))+(2)/(z) is equal to ________

For |z-1=1,i tan((arg(z-1))/(2))+(2)/(z) is

if |z_1+z_2|=|z_1|+|z_2|, then prove that a r g(z_1)=a r g(z_2) if |z_1-z_2|=|z_1|+|z_2|, then prove that a r g(z_1)=a r g(z_2)=pi

If z_(1)=-3+4i and z_(2)=12-5i, "show that", |(z_(1))/(z_(2))|=(|z_(1)|)/(|z_(2)|)

If |(Z-5i)/(Z+5i)|=1 ,then show that Z in R

If z_(1)=4-3iand z_(2)=-12+5i, "show that", |z_(1)/z_(2)|=|z_(1)|/|z_(2)|

IF (1+i)z=(1-i)z, then show that z=-barz .