Home
Class 11
MATHS
If a and b are distinct positive real nu...

If a and b are distinct positive real numbers such that `a, a_(1), a_(2), a_(3), a_(4), a_(5), b` are in A.P. , `a, b_(1), b_(2), b_(3), b_(4), b_(5), b` are in G.P. and `a, c_(1), c_(2), c_(3), c_(4), c_(5), b` are in H.P., then the roots of `a_(3)x^(2)+b_(3)x+c_(3)=0` are

Promotional Banner

Similar Questions

Explore conceptually related problems

Suppose four distinct positive numbers a_(1),a_(2),a_(3),a_(4) are in G.P.Let b_(1)=a_(1),b_(2)=b_(1)+a_(2)*b_(3)=b_(2)+a_(3) and b_(4)=b_(3)+a_(1)

Suppose four distinct positive numbers a_(1),a_(2),a_(3),a_(4) are in G.P. Let b_(1)=a_(1),b_(2)=b_(1)+a_(2),b_(3)=b_(2)+a_(3)andb_(4)=b_(3)+a_(4) . Statement -1 : The numbers b_(1),b_(2),b_(3),b_(4) are neither in A.P. nor in G.P. Statement -2: The numbers b_(1),b_(2),b_(3),b_(4) are in H.P.

Suppose four distinct positive numbers a_(1),a_(2),a_(3),a_(4) are in G.P. Let b_(1)=a_(1), b_(2)=b_(1)+a_(2),b_(3)=b_(2)+a_(3)andb_(4)=b_(3)+a_(4) . Statement -1 : The numbers b_(1),b_(2),b_(3),b_(4) are neither in A.P. nor in G.P. Statement -2: The numbers b_(1),b_(2),b_(3),b_(4) are in H.P.

Let A and B be two sets such that n(A) = 5 and n(B) = 2 . If (a_(1), 2), (a_(2), 3), (a_(3), 2), (a_(4), 3), (a_(5), 2) are in A xx B and a_(1), a_(2), a_(3), a_(4) and a_(5) are distinct, find A and B.

Suppose four distinct positive numbers a_(1),a_(2),a_(3),a_(4) are in G.P. Let b_(1)=a_(1)+,a_(b)=b_(1)+a_(2),b_(3)=b_(2)+a_(3)andb_(4)=b_(3)+a_(4) . Statement -1 : The numbers b_(1),b_(2),b_(3),b_(4) are neither in A.P. nor in G.P. Statement -2: The numbers b_(1),b_(2),b_(3),b_(4) are in H.P.

Suppose four distinct positive numbers a_(1),a_(2),a_(3),a_(4) are in G.P. Let b_(1)=a_(1)+,a_(b)=b_(1)+a_(2),b_(3)=b_(2)+a_(3)andb_(4)=b_(3)+a_(4) . Statement -1 : The numbers b_(1),b_(2),b_(3),b_(4) are neither in A.P. nor in G.P. Statement -2: The numbers b_(1),b_(2),b_(3),b_(4) are in H.P.

Suppose four distinct positive numbers a_(1),a_(2),a_(3),a_(4) are in G.P. Let b_(1)=a_(1)+,a_(b)=b_(1)+a_(2),b_(3)=b_(2)+a_(3)andb_(4)=b_(3)+a_(4) . Statement -1 : The numbers b_(1),b_(2),b_(3),b_(4) are neither in A.P. nor in G.P. Statement -2: The numbers b_(1),b_(2),b_(3),b_(4) are in H.P.