Home
Class 10
MATHS
If alpha,beta,gamma are the zeros of th...

If `alpha,beta,gamma` are the zeros of the polynomial `f(x)=x^3-p x^2+q x-r ,` then `1/(alphabeta)+1/(betagamma)+1/(gammaalpha)=` (a) `r/p` (b) `p/r` (c) `-p/r` (d) `-r/p`

Promotional Banner

Similar Questions

Explore conceptually related problems

If alpha,beta,gamma are the zeroes of the polynomial x^(3)+px^(2)+qx+r , then find (1)/(alphabeta)+(1)/(betagamma)+(1)/(gammaalpha)

If alpha,beta,gamma ,are the zeroes of the polynomial x^3-px^2+qx-r ,then 1/(alphabeta)+1/(betagamma)+1/(gammaalpha) =? p/r -p/r r/p -r/p

If alpha,beta,gamma are the zeros of the polynomial f(x)=x^(3)-px^(2)+qx-r, then (1)/(alpha beta)+(1)/(beta gamma)+(a)/(gamma alpha)=(r)/(p)( b) (p)/(r)(c)-(p)/(r)(d)-(r)/(p)

If alpha,beta,gamma be the zeroes of the polynomial x^3-6x^2-x+30 , then alphabeta+betagamma+gammaalpha =?

If alpha,beta,gamma are the roots of the equation x^3+p x^2+q x+r=0, then find he value of (alpha-1/(betagamma))(beta-1/(gammaalpha))(gamma-1/(alphabeta)) .

If alpha,beta,gamma are the roots of the equation x^3+p x^2+q x+r=0, then find he value of (alpha-1/(betagamma))(beta-1/(gammaalpha))(gamma-1/(alphabeta)) .

Find the condition that the zeros of the polynomial f(x)=x^3+3p x^2+3q x+r may be in A.P.

If alpha, beta and gamma are the roots of the equation x^(3)-px^(2)+qx-r=0 , then the value of (alphabeta)/(gamma)+(betagamma)/(alpha)+(gammaalpha)/(beta) is equal to

If alpha, beta and gamma are the roots of the equation x^(3)-px^(2)+qx-r=0 , then the value of (alphabeta)/(gamma)+(betagamma)/(alpha)+(gammaalpha)/(beta) is equal to

If alpha , beta , gamma are the roots of x^3 -px^2 +qx -r=0 and r ne 0 then find (1)/( alpha^2) +(1)/( beta^2) +(1)/( gamma ^2) in terms of p,q ,r