Home
Class 12
MATHS
If In=int-pi^pi (sinnx)/((1+pi^x)sinx)dx...

If `I_n=int_-pi^pi (sinnx)/((1+pi^x)sinx)dx, n=0,1,2, …,` then (A) `I_n=I_(n+2)` (B) `sum_(m=1)^10 I_(2m+1)=10pi` (C) `sum_(m=1)^10 I_(2m)=0` (D) `I_n=I_(n+1)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If I_n=int_(-pi)^(pi) \ (sinnx)/((1+pi^x) \ sinx) \ dx, n=0,1,2,...... then which one of the following is not true ?

If I_n=int_(-pi)^(pi) \ (sinnx)/((1+pi^x) \ sinx) \ dx, n=0,1,2,...... then which one of the following is not true ?

If I_n=int_(-pi)^(pi) \ (sinnx)/((1+pi^x) \ sinx) \ dx, n=0,1,2,...... then which one of the following is not true ?

If I_(n)=int_(0)^(pi)(1-sin2nx)/(1-cos2x)dx then I_(1),I_(2),I_(3),"….." are in

If I_(n)=int_(0)^(pi)(1-sin2nx)/(1-cos2x)dx then I_(1),I_(2),I_(3),"….." are in

If I_(n)=int_(0)^(pi)(1-sin2nx)/(1-cos2x)dx then I_(1),I_(2),I_(3),"….." are in

If I_(n)=int_(0)^(pi)(1-sin2nx)/(1-cos2x)dx then I_(1),I_(2),I_(3),"….." are in

If I_(n)=int_(0)^(pi) e^(x)(sinx)^(n)dx , then (I_(3))/(I_(1)) is equal to

If I_n=int_(pi/4)^(pi/2) (tanx)^-n dx(ngt1) , then I_n+I_(n+2)= (A) 1/(n-1) (B) 1/(n+1) (C) -1/(n+1) (D) 1/n-1