Home
Class 12
MATHS
If x^y. y^x=1 , prove that (dy)/(dx)=-(...

If `x^y. y^x=1` , prove that `(dy)/(dx)=-(y(y+xlogy))/(x(ylogx+x))`

Promotional Banner

Similar Questions

Explore conceptually related problems

If x^(y).y^(x)=1, prove that (dy)/(dx)=-(y(y+x log y))/(x(y log x+x))

If x^(y)y^(x),=1, prove that (dy)/(dx),=-(y(y+x log y))/(x(y log x+x))

If x^ydoty^x=1,p rov et h a t(dy)/(dx)=-(y(y+xlogy)/(x(ylogx+x)

If x^y= y^x , prove that (dy)/(dx)=((y/x-logy))/((x/y-logx))

If x^(y)=y^(x) , prove that (dy)/(dx)=((y)/(x)-log y)/((x)/(y)-log x)

If x^y.y^x = 1 , then prove that : dy/dx = (-y (y+x logx))/(x(y log x + x))

If ye^(y)=x, prove that,(dy)/(dx)=(y)/(x(1+y))

If x ylog(x+y)=1 , prove that (dy)/(dx)=-(y(x^2y+x+y))/(x(x y^2+x+y))

If x=e^(x//y) , prove that (dy)/(dx)=(x-y)/(xlogx)

If y = x^y , prove that (dy)/(dx) = (y^2)/(x(1 - y log x))