Home
Class 12
MATHS
lim(x to 0) (2 int(0)^(cosx) cos^(-1) t ...

`lim_(x to 0) (2 int_(0)^(cosx) cos^(-1) t dt)/( 2x -sin 2x)` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of lim _( x to 0^(+))(int _(1)^(cos x) (cos ^(-1) t )dt)/(2x - sin 2x) is equal to:

The value of lim_(x rarr0^(+))(int_(1)^(cos x)(cos^(-1)t)dt)/(2x-sin(2x)) is equal to

The value of lim_(x to 0)(int_(0)^(x^(2))sec^(2)t dt)/(x sin x) is equal to -

lim_( x to 0) ( int_(0)^(x^(2)) cos^(2)t" "dt)/(x sin x) = ...

The value of lim_(x rarr0)(2int_(0)^(cos x ) cos^(-1) (t))/(2x- sin 2 x)dx is

The value of lim_(x rarr0)(2int_(0)^(cos x ) cos^(-1) (t))/(2x- sin 2 x)dx is

The value of lim_(x rarr0)(2int_(0)^(cos x ) cos^(-1) (t))/(2x- sin 2 x)dx is

The value of Lim_(x->0^+)(int_1^cosx(cos^-1t)dt)/(2x-sin(2x)) is equal to

The value of lim_( x to 0) (int_(0)^(x^(2)) cos(t^(2))dt)/(x sinx) is