Home
Class 11
PHYSICS
A solid body rotates about a stationary ...

A solid body rotates about a stationary axis accordig to the law `theta=6t-2t^(3)`. Here `theta`, is in radian and `t` in seconds. Find
(a). The mean values of thhe angular velocity and angular acceleration averaged over the time interval between `t=0` and the complete stop.
(b). The angular acceleration at the moment when the body stops.
Hint: if `y=y(t)`. then mean/average value of `y` between `t_(1)` and `t_(2)` is `ltygt=(int_(t_(1))^(t_(2))y(t)dt))/(t_(2)-t_(1))`

Promotional Banner

Similar Questions

Explore conceptually related problems

A solid body rotates about a stationary axis so that the rotation angle theta varies with time as theta=6t-2t^(3) radian. Find (a) the angular acceleration at the moment when the body stops and (b) the average value of angular velocity and angular acceleration averaged over the time interval between t=0 and the complete stop.

A solid body rotates about a stationary axis so that the rotation angle theta varies with time as theta=6t-2t^(3) radian. Find (a) the angular acceleration at the moment when the body stops and (b) the average value of angular velocity and angular acceleration averaged over the time interval between t=0 and the complete stop.

A particle starts rotating from rest according to the formuls, theta=((3t^3)/20 ) - ((t^2)/3)) where theta is in radian and t is second. Find the angular velocity to and angular acceleration a at the end of 5 seconds.

A particle starts rotating from rest according to the formula theta = (t^(2)//64) - (t//8) " where " theta is the angle in radian and t in s . Find the angular velocity and angular acceleration at the end of 4 s .

The angular displacement of a particle performing circular motion is theta = (t^3)/60 - t/4 where theta is in radian and 't' is in seconds. Then the angular velocity and angular accleration of the particle at the end of 5 s will be

Angular position theta of a particle moving on a curvilinear path varies according to the equation theta=t^(3)-3t^(2)+4t-2 , where theta is in radians and time t is in seconds. What is its average angular acceleration in the time interval t=0s to t=2s?

The angular displacement of a particle performing circular motion is theta=(t^(3))/(60)-(t)/(4) where theta is in radian and 't' is in second .Then the angular velocity and angular acceleraion of a particle at the end of 5 s will be

Angular position theta of a particle moving on a curvilinear path varies according to the equation theta=t^(3)-3t^(2)+4t-2 , where theta is in radians and time t is in seconds. What is its average angular acceleration in the time interval t=2s to t=4s ?

Angular position theta of a particle moving on a curvilinear path varies according to the equation theta=t^(3)-3t^(2)+4t-2 , where theta is in radians and time t is in seconds. What is its average angular acceleration in the time interval t=2s to t=4s ?

A solid body rotates with angular velocity vecomega=3thati+2t^(2) hatj rad//s . Find (a) the magnitude of angular velocity and angular acceleration at time t=1 s and (b) the angle between the vectors of the angular velocity and the angular acceleration at that moment.