Home
Class 12
MATHS
underset( x rarr 0 ) ( "lim")((1+sin x )...

`underset( x rarr 0 ) ( "lim")((1+sin x )/( 1- sin x ))^("cosec x ")` is equal to `:`

Promotional Banner

Similar Questions

Explore conceptually related problems

Find underset( x rarr 0 ) ( "Lim") ( e^(sin x) -sin x -1)/( x^(2))

Find underset( x rarr 0 ) ( "Lim") ( e^(sinx) -sin x -1)/( x^(2))

Evaluate underset( x rarr0 ) ( "Lim") ( 3 sin x - sin 3x)/( x- sin x )

Evaluate: underset(x rarr 0)(lim) x^(sin x)

lim_(x rarr0)(1+sin x)^(cos x) is equal to

lim_(x rarr 0) ((1+tanx)/(1+sin x))^(cosec x) =

If underset(x rarr 0)lim (2a sin x - sin 2x)/(tan^(3)x) exists and is equal to 1, then the value of a is -

lim_(x rarr0)(sin x)/(x(1+cos x)) is equal to

If l = underset( x rarr 0) ("Lim")( x ( 1+ a cos x ) - bsin x ) /( x^(3))= underset( x rarr 0 ) ("Lim") ( 1+a cos x ) /( x^(2))- underset( x rarr 0 ) ("lim")( b sin x )/( x^(3)) , where l in R , then