Home
Class 14
MATHS
If x=sqrt3 +sqrt2 then the value of of x...

If `x=sqrt3 +sqrt2` then the value of of `x^(3)-(1)/(x^(3))` is

A

`10sqrt2`

B

`14sqrt2`

C

`22sqrt2`

D

`8sqrt2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( x^3 - \frac{1}{x^3} \) given that \( x = \sqrt{3} + \sqrt{2} \). ### Step-by-Step Solution: 1. **Find \( \frac{1}{x} \)**: \[ x = \sqrt{3} + \sqrt{2} \] To find \( \frac{1}{x} \), we rationalize it: \[ \frac{1}{x} = \frac{1}{\sqrt{3} + \sqrt{2}} \cdot \frac{\sqrt{3} - \sqrt{2}}{\sqrt{3} - \sqrt{2}} = \frac{\sqrt{3} - \sqrt{2}}{(\sqrt{3})^2 - (\sqrt{2})^2} = \frac{\sqrt{3} - \sqrt{2}}{3 - 2} = \sqrt{3} - \sqrt{2} \] 2. **Calculate \( x - \frac{1}{x} \)**: \[ x - \frac{1}{x} = (\sqrt{3} + \sqrt{2}) - (\sqrt{3} - \sqrt{2}) = \sqrt{3} + \sqrt{2} - \sqrt{3} + \sqrt{2} = 2\sqrt{2} \] 3. **Use the identity for \( x^3 - \frac{1}{x^3} \)**: The formula for \( x^3 - \frac{1}{x^3} \) in terms of \( x - \frac{1}{x} \) is: \[ x^3 - \frac{1}{x^3} = \left( x - \frac{1}{x} \right) \left( x^2 + 1 + \frac{1}{x^2} \right) \] We first need to find \( x^2 + \frac{1}{x^2} \). 4. **Calculate \( x^2 \)**: \[ x^2 = (\sqrt{3} + \sqrt{2})^2 = 3 + 2 + 2\sqrt{3}\sqrt{2} = 5 + 2\sqrt{6} \] 5. **Calculate \( \frac{1}{x^2} \)**: \[ \frac{1}{x^2} = \left( \frac{1}{\sqrt{3} + \sqrt{2}} \right)^2 = \frac{1}{5 + 2\sqrt{6}} \] To rationalize: \[ \frac{1}{5 + 2\sqrt{6}} \cdot \frac{5 - 2\sqrt{6}}{5 - 2\sqrt{6}} = \frac{5 - 2\sqrt{6}}{(5)^2 - (2\sqrt{6})^2} = \frac{5 - 2\sqrt{6}}{25 - 24} = 5 - 2\sqrt{6} \] 6. **Calculate \( x^2 + \frac{1}{x^2} \)**: \[ x^2 + \frac{1}{x^2} = (5 + 2\sqrt{6}) + (5 - 2\sqrt{6}) = 10 \] 7. **Now substitute back into the formula**: \[ x^3 - \frac{1}{x^3} = (x - \frac{1}{x}) \left( x^2 + \frac{1}{x^2} \right) = (2\sqrt{2})(10) = 20\sqrt{2} \] ### Final Answer: Thus, the value of \( x^3 - \frac{1}{x^3} \) is \( 20\sqrt{2} \).
Promotional Banner

Similar Questions

Explore conceptually related problems

If x=sqrt3+sqrt2 then the value of x^3+x+1/x+1/x^3=

If x = sqrt(3)+ sqrt(2) , then the value of x^(3)+x+(1)/(x)+(1)/(x^(3)) is