Home
Class 14
MATHS
If x=(cos theta)/(1-sintheta), then (cos...

If `x=(cos theta)/(1-sintheta),` then `(cos theta)/(1+sin theta)` is equal to

A

`x-1`

B

`(1)/(x)`

C

`(1)/(x+1)`

D

`(1)/(1-x)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \(\frac{\cos \theta}{1 + \sin \theta}\) given that \(x = \frac{\cos \theta}{1 - \sin \theta}\). ### Step-by-Step Solution: 1. **Start with the given equation:** \[ x = \frac{\cos \theta}{1 - \sin \theta} \] 2. **Rearrange the equation to express \(\cos \theta\):** \[ \cos \theta = x(1 - \sin \theta) \] 3. **Substitute \(\cos \theta\) into the expression \(\frac{\cos \theta}{1 + \sin \theta}\):** \[ \frac{\cos \theta}{1 + \sin \theta} = \frac{x(1 - \sin \theta)}{1 + \sin \theta} \] 4. **Multiply the numerator and denominator by the conjugate of the denominator:** \[ \frac{x(1 - \sin \theta)}{1 + \sin \theta} \cdot \frac{1 - \sin \theta}{1 - \sin \theta} = \frac{x(1 - \sin \theta)^2}{(1 + \sin \theta)(1 - \sin \theta)} \] 5. **Use the difference of squares in the denominator:** \[ (1 + \sin \theta)(1 - \sin \theta) = 1 - \sin^2 \theta \] 6. **Recognize that \(1 - \sin^2 \theta = \cos^2 \theta\):** \[ \frac{x(1 - \sin \theta)^2}{\cos^2 \theta} \] 7. **Now simplify the expression:** \[ \frac{x(1 - 2\sin \theta + \sin^2 \theta)}{\cos^2 \theta} \] 8. **Using the identity \(\cos^2 \theta = 1 - \sin^2 \theta\), we can rewrite the expression:** \[ \frac{x(1 - 2\sin \theta + \sin^2 \theta)}{1 - \sin^2 \theta} \] 9. **Now, we can express \(\frac{\cos \theta}{1 + \sin \theta}\) in terms of \(x\):** \[ \frac{\cos \theta}{1 + \sin \theta} = \frac{1}{x} \] ### Final Result: Thus, we find that: \[ \frac{\cos \theta}{1 + \sin \theta} = \frac{1}{x} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

frac(cos theta)(1 - sin theta) is equal to

(cos theta)/(1 + sin theta) equals

(1+cos theta)/(sin^(2)theta) is equal to

(sin theta)/(1+cos theta) is equal to

(cos theta)/(1 - sin theta) + (cos theta)/( 1 + sin theta) equals

(1 + sin theta)/(cos theta) + (cos theta)/(1 + sin theta) is equal to

(sin theta)/(1-cos theta)=(1+cos theta)/(sin theta)

((1+sin theta-cos theta)/(1+sin theta+cos theta))' is equal to

If : cos theta+sintheta=1, "then" : cos theta-sintheta