Home
Class 14
MATHS
If x-(1)/(x)=1, then the value of (x^(4)...

If `x-(1)/(x)=1`, then the value of `(x^(4)-(1)/(x^(2)))/(3x^(2)+5x-3)` is

A

`(1)/(4)`

B

`(1)/(2)`

C

`(3)/(4)`

D

0

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( x - \frac{1}{x} = 1 \) and find the value of \( \frac{x^4 - \frac{1}{x^2}}{3x^2 + 5x - 3} \), we will follow these steps: ### Step 1: Solve for \( x \) Starting with the equation: \[ x - \frac{1}{x} = 1 \] Multiply both sides by \( x \) to eliminate the fraction: \[ x^2 - 1 = x \] Rearranging gives us: \[ x^2 - x - 1 = 0 \] Now we can use the quadratic formula \( x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \) where \( a = 1, b = -1, c = -1 \): \[ x = \frac{-(-1) \pm \sqrt{(-1)^2 - 4 \cdot 1 \cdot (-1)}}{2 \cdot 1} \] \[ x = \frac{1 \pm \sqrt{1 + 4}}{2} \] \[ x = \frac{1 \pm \sqrt{5}}{2} \] ### Step 2: Calculate \( x^2 \) Next, we need to find \( x^2 \): \[ x^2 = \left(\frac{1 + \sqrt{5}}{2}\right)^2 = \frac{1 + 2\sqrt{5} + 5}{4} = \frac{6 + 2\sqrt{5}}{4} = \frac{3 + \sqrt{5}}{2} \] ### Step 3: Calculate \( x^4 \) Now, we calculate \( x^4 \): \[ x^4 = (x^2)^2 = \left(\frac{3 + \sqrt{5}}{2}\right)^2 = \frac{(3 + \sqrt{5})^2}{4} = \frac{9 + 6\sqrt{5} + 5}{4} = \frac{14 + 6\sqrt{5}}{4} = \frac{7 + 3\sqrt{5}}{2} \] ### Step 4: Calculate \( \frac{1}{x^2} \) Now we find \( \frac{1}{x^2} \): \[ \frac{1}{x^2} = \frac{2}{3 + \sqrt{5}} \cdot \frac{3 - \sqrt{5}}{3 - \sqrt{5}} = \frac{2(3 - \sqrt{5})}{(3 + \sqrt{5})(3 - \sqrt{5})} = \frac{2(3 - \sqrt{5})}{9 - 5} = \frac{2(3 - \sqrt{5})}{4} = \frac{3 - \sqrt{5}}{2} \] ### Step 5: Calculate \( x^4 - \frac{1}{x^2} \) Now we can compute \( x^4 - \frac{1}{x^2} \): \[ x^4 - \frac{1}{x^2} = \frac{7 + 3\sqrt{5}}{2} - \frac{3 - \sqrt{5}}{2} = \frac{(7 + 3\sqrt{5}) - (3 - \sqrt{5})}{2} = \frac{4 + 4\sqrt{5}}{2} = 2 + 2\sqrt{5} \] ### Step 6: Calculate \( 3x^2 + 5x - 3 \) Next, we calculate \( 3x^2 + 5x - 3 \): \[ 3x^2 = 3 \cdot \frac{3 + \sqrt{5}}{2} = \frac{9 + 3\sqrt{5}}{2} \] \[ 5x = 5 \cdot \frac{1 + \sqrt{5}}{2} = \frac{5 + 5\sqrt{5}}{2} \] Combining these: \[ 3x^2 + 5x - 3 = \frac{9 + 3\sqrt{5}}{2} + \frac{5 + 5\sqrt{5}}{2} - 3 = \frac{(9 + 5 - 6) + (3\sqrt{5} + 5\sqrt{5})}{2} = \frac{8 + 8\sqrt{5}}{2} = 4 + 4\sqrt{5} \] ### Step 7: Final Calculation Now, we can find the value of the original expression: \[ \frac{x^4 - \frac{1}{x^2}}{3x^2 + 5x - 3} = \frac{2 + 2\sqrt{5}}{4 + 4\sqrt{5}} = \frac{2(1 + \sqrt{5})}{4(1 + \sqrt{5})} = \frac{2}{4} = \frac{1}{2} \] Thus, the final answer is: \[ \boxed{\frac{1}{2}} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If x+(1)/(x)=17 , what is the value of (x^(4)+(1)/(x^(2)))/(x^(2)-3x+1) ?

If x+(1)/(x)=5 then what is the value of (x^(4)+(1)/(x^(2)))/(x^(2)-3x+1) ?

If x^(2)-5x+1=0 , then the value of (x^(4) + (1)/(x^(2))) div (x^(2)+1) is

If x-(1)/(x)=3, find the values of x^(2)+(1)/(x^(2)) and x^(4)+(1)/(x^(4))

If 3x - (1)/(2x) = 3 , then find the value of (36x^(4) + 1)/(4x^(2)) .