Home
Class 14
MATHS
If x + 1/x = 5, then x^6 + 1/(x^6) is...

If `x + 1/x = 5`, then `x^6 + 1/(x^6)` is

A

12098

B

12048

C

14062

D

12092

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem where \( x + \frac{1}{x} = 5 \) and we need to find \( x^6 + \frac{1}{x^6} \), we can follow these steps: ### Step 1: Square the given equation We start with the equation: \[ x + \frac{1}{x} = 5 \] Now, we square both sides: \[ \left(x + \frac{1}{x}\right)^2 = 5^2 \] This expands to: \[ x^2 + 2 + \frac{1}{x^2} = 25 \] Subtracting 2 from both sides gives us: \[ x^2 + \frac{1}{x^2} = 25 - 2 = 23 \] ### Step 2: Cube the result from Step 1 Now that we have \( x^2 + \frac{1}{x^2} = 23 \), we will cube this result: \[ \left(x^2 + \frac{1}{x^2}\right)^3 = 23^3 \] Expanding the left side using the formula \( (a + b)^3 = a^3 + b^3 + 3ab(a + b) \): \[ x^6 + 3\left(x^2 \cdot \frac{1}{x^2}\right)(x^2 + \frac{1}{x^2}) + \frac{1}{x^6} = 23^3 \] Since \( x^2 \cdot \frac{1}{x^2} = 1 \), we can simplify this to: \[ x^6 + \frac{1}{x^6} + 3(x^2 + \frac{1}{x^2}) = 23^3 \] Substituting \( x^2 + \frac{1}{x^2} = 23 \): \[ x^6 + \frac{1}{x^6} + 3 \cdot 23 = 23^3 \] ### Step 3: Calculate \( 23^3 \) Now we calculate \( 23^3 \): \[ 23^3 = 23 \times 23 \times 23 = 529 \times 23 = 12167 \] ### Step 4: Solve for \( x^6 + \frac{1}{x^6} \) Now we can substitute back into our equation: \[ x^6 + \frac{1}{x^6} + 69 = 12167 \] Subtracting 69 from both sides gives: \[ x^6 + \frac{1}{x^6} = 12167 - 69 = 12098 \] ### Final Answer Thus, the final result is: \[ \boxed{12098} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If x+ (1)/(x)=3 , then x^(6) + (1)/(x^(6))= ?

If x+((1)/(x)) =p , then x^(6) +((1)/(x^(6))) equals

If (x+(1)/(x))=2 , then the value of (x^(6)+(1)/(x^(6))) is :