Home
Class 14
MATHS
If x^2 - 3x + 1 = 0, then the value of ...

If `x^2 - 3x + 1 = 0`, then the value of `(x^6 + x^4 + x^2 + 1)/(x^3)` will be

A

18

B

15

C

21

D

30

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( x^2 - 3x + 1 = 0 \) and find the value of \( \frac{x^6 + x^4 + x^2 + 1}{x^3} \), we can follow these steps: ### Step 1: Solve the quadratic equation The given equation is: \[ x^2 - 3x + 1 = 0 \] We can use the quadratic formula to find the roots: \[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \] Here, \( a = 1, b = -3, c = 1 \). Plugging in these values: \[ x = \frac{3 \pm \sqrt{(-3)^2 - 4 \cdot 1 \cdot 1}}{2 \cdot 1} = \frac{3 \pm \sqrt{9 - 4}}{2} = \frac{3 \pm \sqrt{5}}{2} \] ### Step 2: Find \( x + \frac{1}{x} \) To find \( x + \frac{1}{x} \), we first divide the original equation by \( x \): \[ \frac{x^2}{x} - \frac{3x}{x} + \frac{1}{x} = 0 \implies x - 3 + \frac{1}{x} = 0 \implies x + \frac{1}{x} = 3 \] ### Step 3: Find \( x^2 + \frac{1}{x^2} \) Using the identity: \[ \left(x + \frac{1}{x}\right)^2 = x^2 + 2 + \frac{1}{x^2} \] We can rearrange it to find \( x^2 + \frac{1}{x^2} \): \[ x^2 + \frac{1}{x^2} = \left(x + \frac{1}{x}\right)^2 - 2 = 3^2 - 2 = 9 - 2 = 7 \] ### Step 4: Find \( x^3 + \frac{1}{x^3} \) Using the identity: \[ x^3 + \frac{1}{x^3} = \left(x + \frac{1}{x}\right)\left(x^2 + \frac{1}{x^2}\right) - \left(x + \frac{1}{x}\right) \] Substituting the values we found: \[ x^3 + \frac{1}{x^3} = 3 \cdot 7 - 3 = 21 - 3 = 18 \] ### Step 5: Calculate \( x^6 + x^4 + x^2 + 1 \) We can express \( x^6 + x^4 + x^2 + 1 \) using the values we have: \[ x^6 + x^4 + x^2 + 1 = (x^6 + 1) + (x^4 + x^2) = (x^3 + \frac{1}{x^3})^2 - 2 + (x^2 + \frac{1}{x^2}) = 18^2 - 2 + 7 \] Calculating \( 18^2 \): \[ 18^2 = 324 \] Thus, \[ x^6 + x^4 + x^2 + 1 = 324 - 2 + 7 = 329 \] ### Step 6: Divide by \( x^3 \) Now, we need to find: \[ \frac{x^6 + x^4 + x^2 + 1}{x^3} = \frac{329}{x^3} \] Using \( x^3 + \frac{1}{x^3} = 18 \), we can express \( x^3 \) in terms of \( x + \frac{1}{x} \): \[ \frac{329}{x^3} = \frac{329}{\frac{18}{x^3}} = \frac{329}{18} \] ### Final Answer Thus, the value of \( \frac{x^6 + x^4 + x^2 + 1}{x^3} \) is: \[ \frac{329}{18} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If x^2 - 3x +1=0, then the value of x +1/x is