Home
Class 14
MATHS
If x^4 + 1/(x^4) = 119 and x > 1. Then f...

If `x^4 + 1/(x^4) = 119 and x > 1`. Then find the positive value of `x^3 - 1/(x^3)` .

A

25

B

27

C

36

D

49

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we start with the given equation: 1. **Given Equation**: \[ x^4 + \frac{1}{x^4} = 119 \] 2. **Add 2 to Both Sides**: We can rewrite the left side as a square: \[ x^4 + 2 + \frac{1}{x^4} = 119 + 2 \] This simplifies to: \[ (x^2 + \frac{1}{x^2})^2 = 121 \] 3. **Take the Square Root**: Taking the square root of both sides gives us: \[ x^2 + \frac{1}{x^2} = 11 \] 4. **Use the Identity for Cubes**: We need to find \( x^3 - \frac{1}{x^3} \). We can use the identity: \[ x^3 - \frac{1}{x^3} = (x + \frac{1}{x})(x^2 - 1 + \frac{1}{x^2}) \] First, we need to find \( x + \frac{1}{x} \). 5. **Find \( x^2 - \frac{1}{x^2} \)**: We can use the identity: \[ (x - \frac{1}{x})^2 = x^2 - 2 + \frac{1}{x^2} \] Rearranging gives us: \[ x^2 + \frac{1}{x^2} = (x - \frac{1}{x})^2 + 2 \] Since we know \( x^2 + \frac{1}{x^2} = 11 \), we can set: \[ (x - \frac{1}{x})^2 + 2 = 11 \] Thus: \[ (x - \frac{1}{x})^2 = 9 \] Taking the square root gives: \[ x - \frac{1}{x} = 3 \quad (\text{since } x > 1) \] 6. **Find \( x + \frac{1}{x} \)**: We can find \( x + \frac{1}{x} \) using the identity: \[ (x + \frac{1}{x})^2 = (x - \frac{1}{x})^2 + 4 \] Substituting the value we found: \[ (x + \frac{1}{x})^2 = 9 + 4 = 13 \] Taking the square root gives: \[ x + \frac{1}{x} = \sqrt{13} \] 7. **Calculate \( x^3 - \frac{1}{x^3} \)**: Now we can substitute back into our identity: \[ x^3 - \frac{1}{x^3} = (x + \frac{1}{x})((x^2 + \frac{1}{x^2}) - 1) \] Substituting the known values: \[ x^3 - \frac{1}{x^3} = \sqrt{13} \cdot (11 - 1) = \sqrt{13} \cdot 10 = 10\sqrt{13} \] However, we need to find the value of \( x^3 - \frac{1}{x^3} \) directly from the previous steps. 8. **Final Calculation**: Using the earlier derived formula: \[ x^3 - \frac{1}{x^3} = (x - \frac{1}{x})^3 + 3(x - \frac{1}{x}) \] We have: \[ (3)^3 + 3 \cdot 3 = 27 + 9 = 36 \] Thus, the positive value of \( x^3 - \frac{1}{x^3} \) is: \[ \boxed{36} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If x^(4) +(1)/(x^(4)) =119 and x gt 1 then what is the value of x^(3)-(1)/(x^(3)) ?

If x^4 + (1)/(x^4) =727 , then find the value of x^3 - (1)/(x^3)

If x+(1)/(x) =4 then find the value of x^(3)+(1)/(x^(3)) .

4^(x-1)=3^(x) then find the value of x

if 3^(x)=4^(x-1) then find the value of x

If X+ 1/x=4, then value of x^3 + 1//x^3=?