Home
Class 14
MATHS
If cos^2 theta - sin^2 theta = 1/3, wher...

If `cos^2 theta - sin^2 theta = 1/3`, where `0 le theta le pi/2`, then the value of `cos^4 theta - sin^4 theta` is

A

`1/3`

B

`2/3`

C

`1/9`

D

`2/9`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the given equation: \[ \cos^2 \theta - \sin^2 \theta = \frac{1}{3} \] We need to find the value of: \[ \cos^4 \theta - \sin^4 \theta \] ### Step 1: Rewrite \(\cos^4 \theta - \sin^4 \theta\) We can use the difference of squares formula, which states that \(A^2 - B^2 = (A - B)(A + B)\). Here, we can let: - \(A = \cos^2 \theta\) - \(B = \sin^2 \theta\) Thus, \[ \cos^4 \theta - \sin^4 \theta = (\cos^2 \theta - \sin^2 \theta)(\cos^2 \theta + \sin^2 \theta) \] ### Step 2: Simplify \(\cos^2 \theta + \sin^2 \theta\) From the Pythagorean identity, we know that: \[ \cos^2 \theta + \sin^2 \theta = 1 \] ### Step 3: Substitute the values into the equation Now substituting back into our expression: \[ \cos^4 \theta - \sin^4 \theta = (\cos^2 \theta - \sin^2 \theta)(1) \] This simplifies to: \[ \cos^4 \theta - \sin^4 \theta = \cos^2 \theta - \sin^2 \theta \] ### Step 4: Substitute the value of \(\cos^2 \theta - \sin^2 \theta\) From the original equation, we have: \[ \cos^2 \theta - \sin^2 \theta = \frac{1}{3} \] ### Step 5: Final Calculation Thus, we can conclude: \[ \cos^4 \theta - \sin^4 \theta = \frac{1}{3} \] ### Final Answer The value of \(\cos^4 \theta - \sin^4 \theta\) is: \[ \frac{1}{3} \] ---
Promotional Banner

Similar Questions

Explore conceptually related problems

For 0 le theta le pi/2 the maximum value of sin theta + cos theta is

If sin 2 theta = cos theta , where 0^(@) le theta le 90^(@) , then theta =

If sectheta + cos theta = 5/2 , where 0 le theta le 90^(@) , then what is the value of sin^(2)theta ?

If 2sin^(2)theta=3cos theta, where 0<=theta<=2 pi, then find the value of theta

Statement I If 2 cos theta + sin theta=1(theta != (pi)/(2)) then the value of 7 cos theta + 6 sin theta is 2. Statement II If cos 2theta-sin theta=1/2, 0 lt theta lt pi/2 , then sin theta+cos 6 theta = 0 .