Home
Class 14
MATHS
If tan theta = 1/(sqrt(11)) and 0 < thet...

If `tan theta = 1/(sqrt(11)) and 0 < theta < pi/2`, then the value of `("cosec^2 theta - sec^2 theta)/(cosec^2 theta + sec^2 theta)` is

A

`3/4`

B

`4/5`

C

`5/6`

D

`6/7`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \(\frac{\csc^2 \theta - \sec^2 \theta}{\csc^2 \theta + \sec^2 \theta}\) given that \(\tan \theta = \frac{1}{\sqrt{11}}\) and \(0 < \theta < \frac{\pi}{2}\). ### Step 1: Find \(\sin \theta\) and \(\cos \theta\) Given \(\tan \theta = \frac{1}{\sqrt{11}}\), we can express this as: \[ \tan \theta = \frac{\text{opposite}}{\text{adjacent}} = \frac{1}{\sqrt{11}} \] This implies that in a right triangle, the opposite side is \(1\) and the adjacent side is \(\sqrt{11}\). Using the Pythagorean theorem, we find the hypotenuse \(h\): \[ h = \sqrt{1^2 + (\sqrt{11})^2} = \sqrt{1 + 11} = \sqrt{12} = 2\sqrt{3} \] Now we can find \(\sin \theta\) and \(\cos \theta\): \[ \sin \theta = \frac{\text{opposite}}{\text{hypotenuse}} = \frac{1}{2\sqrt{3}} = \frac{\sqrt{3}}{6} \] \[ \cos \theta = \frac{\text{adjacent}}{\text{hypotenuse}} = \frac{\sqrt{11}}{2\sqrt{3}} = \frac{\sqrt{33}}{6} \] ### Step 2: Calculate \(\csc^2 \theta\) and \(\sec^2 \theta\) Now we can find \(\csc^2 \theta\) and \(\sec^2 \theta\): \[ \csc^2 \theta = \frac{1}{\sin^2 \theta} = \frac{1}{\left(\frac{1}{2\sqrt{3}}\right)^2} = \frac{1}{\frac{1}{12}} = 12 \] \[ \sec^2 \theta = \frac{1}{\cos^2 \theta} = \frac{1}{\left(\frac{\sqrt{11}}{2\sqrt{3}}\right)^2} = \frac{1}{\frac{11}{12}} = \frac{12}{11} \] ### Step 3: Substitute into the expression Now we substitute \(\csc^2 \theta\) and \(\sec^2 \theta\) into the expression: \[ \frac{\csc^2 \theta - \sec^2 \theta}{\csc^2 \theta + \sec^2 \theta} = \frac{12 - \frac{12}{11}}{12 + \frac{12}{11}} \] ### Step 4: Simplify the numerator and denominator First, we simplify the numerator: \[ 12 - \frac{12}{11} = \frac{12 \cdot 11}{11} - \frac{12}{11} = \frac{132 - 12}{11} = \frac{120}{11} \] Now we simplify the denominator: \[ 12 + \frac{12}{11} = \frac{12 \cdot 11}{11} + \frac{12}{11} = \frac{132 + 12}{11} = \frac{144}{11} \] ### Step 5: Final calculation Now we have: \[ \frac{\frac{120}{11}}{\frac{144}{11}} = \frac{120}{144} = \frac{5}{6} \] Thus, the final answer is: \[ \frac{5}{6} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If tan theta=(1)/(sqrt(3)), then find the value of (2tan theta)/(1-tan^(2)theta)

If tan theta = sqrt(3) , find the value of ((2 sec theta)/(1 + tan^(2) theta)) .

If tan theta =2/sqrt11,0 यदि tan theta =2/sqrt11,0< theta < 90^@ , है, तो (2 cosec^2 theta -3 sec^2 theta )/(3cosec^2 theta +4sec^2 theta ) का मान किसके बराबर है?

Find the general solution of ( i ) tan theta=(1)/(sqrt(3)) (ii) tan2 theta=sqrt(3)( iii)tan 3 theta=-1

Find the value of sin 2 theta_1 + tan 3theta_2 , if tan(theta_1 + theta_2) = sqrt(3) and sec ( theta_1 - theta_2 )= (2)/(sqrt3) .

If : tan theta - sqrt(2) cdot "sec" theta = sqrt(3) , then : theta =

If tan^(2)theta-(1+sqrt(3))tan theta+sqrt(3)=0, then the general value of theta is

If tan^(2)theta-(1+sqrt(3))tan theta+sqrt(3)=0, then the general value of theta is

If tan theta=(5)/(6) and tan phi=(1)/(11) , then theta+phi =______