Home
Class 14
MATHS
If x [-2 {-4(-a)}] + 5[-2{-2(-a)}] = 4a,...

If `x [-2 {-4(-a)}] + 5[-2{-2(-a)}] = 4a`, then x =

A

`-2`

B

`-3`

C

`-4`

D

`-5`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( x[-2{-4(-a)}] + 5[-2{-2(-a)}] = 4a \), we will follow these steps: ### Step 1: Simplify the expressions inside the brackets First, we simplify the expressions inside the brackets. 1. For the first term: \[ -4(-a) = 4a \] So, \[ -2{-4(-a)} = -2(4a) = -8a \] 2. For the second term: \[ -2(-a) = 2a \] So, \[ -2{-2(-a)} = -2(2a) = -4a \] ### Step 2: Substitute back into the equation Now substitute these simplified expressions back into the original equation: \[ x[-8a] + 5[-4a] = 4a \] ### Step 3: Distribute and combine like terms Distributing the terms gives us: \[ -8ax - 20a = 4a \] ### Step 4: Move all terms involving \( a \) to one side Now, we will move \( -20a \) to the right side of the equation: \[ -8ax = 4a + 20a \] This simplifies to: \[ -8ax = 24a \] ### Step 5: Solve for \( x \) Now, divide both sides by \( -8a \) (assuming \( a \neq 0 \)): \[ x = \frac{24a}{-8a} \] This simplifies to: \[ x = -3 \] ### Final Answer Thus, the value of \( x \) is: \[ \boxed{-3} \] ---
Promotional Banner

Similar Questions

Explore conceptually related problems

x ^ (2) + 4x-5

If x≠ − 1 , 2 and 5, then the simplified value of {(2(x^3 -8))/(x^2-x -2) xx (x^2+ 2x +1)/(x^2 -4x-5) ÷ (x^2 +2x+4)/(3x-15)} is equal to: यदि x≠ − 1 , 2 और 5 है तो {(2(x^3 -8))/(x^2-x -2) xx (x^2+ 2x +1)/(x^2 -4x-5) ÷ (x^2 +2x+4)/(3x-15)} का सरलीकृत मान बराबर हैः

If P= (x^4-8x)/(x^3-x^2-2x), Q= (x^2+2x+1)/(x^2-4x-5) and R=(2x^2+4x+8)/(x-5) , then (PxxQ) div R is equal to: यदि P= (x^4-8x)/(x^3-x^2-2x), Q= (x^2+2x+1)/(x^2-4x-5) तथा R=(2x^2+4x+8)/(x-5) है, तो (PxxQ) div R का मान किसके बराबर है ?

If x+2a is factor of x^(5)-4a^(2)x^(3)+2x+2a +3 , then find the value of a .

Add: 5x^(2) + 3x - 8, 4x + 7 - 2x^(2) and 6 - 5x + 4x^(2)

If x ne -1,2 and 5, then the simplified value of {(2(x^3-8))/(x^2-x-2)xx (x^2+2x+1)/(x^2-4x-5)} div (x^2+2x+4)/(3x-15) is equal to : यदि x ne -1,2 और 5 है, तो {(2(x^3-8))/(x^2-x-2)xx (x^2+2x+1)/(x^2-4x-5)} div (x^2+2x+4)/(3x-15) का सरलीकृत मान क्या होगा ?