Home
Class 14
MATHS
If sin theta = 3/5, then the value of (t...

If `sin theta = 3/5`, then the value of `(tan theta + cos theta)/(cot theta + cosec theta)` is equal to

A

`29/60`

B

`31/60`

C

`34/60`

D

`37/60`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \((\tan \theta + \cos \theta) / (\cot \theta + \csc \theta)\) given that \(\sin \theta = \frac{3}{5}\). ### Step 1: Determine the values of \(\cos \theta\) and \(\tan \theta\) Given \(\sin \theta = \frac{3}{5}\), we can use the Pythagorean identity to find \(\cos \theta\). Using the identity: \[ \sin^2 \theta + \cos^2 \theta = 1 \] Substituting the value of \(\sin \theta\): \[ \left(\frac{3}{5}\right)^2 + \cos^2 \theta = 1 \] \[ \frac{9}{25} + \cos^2 \theta = 1 \] \[ \cos^2 \theta = 1 - \frac{9}{25} = \frac{25}{25} - \frac{9}{25} = \frac{16}{25} \] Taking the square root: \[ \cos \theta = \frac{4}{5} \quad (\text{since } \theta \text{ is in the first quadrant}) \] Now, we can find \(\tan \theta\): \[ \tan \theta = \frac{\sin \theta}{\cos \theta} = \frac{\frac{3}{5}}{\frac{4}{5}} = \frac{3}{4} \] ### Step 2: Determine the values of \(\cot \theta\) and \(\csc \theta\) Now, we can find \(\cot \theta\) and \(\csc \theta\): \[ \cot \theta = \frac{1}{\tan \theta} = \frac{4}{3} \] \[ \csc \theta = \frac{1}{\sin \theta} = \frac{5}{3} \] ### Step 3: Substitute into the expression Now we substitute these values into the expression: \[ \frac{\tan \theta + \cos \theta}{\cot \theta + \csc \theta} = \frac{\frac{3}{4} + \frac{4}{5}}{\frac{4}{3} + \frac{5}{3}} \] ### Step 4: Simplify the numerator and denominator **Numerator:** \[ \frac{3}{4} + \frac{4}{5} = \frac{3 \cdot 5 + 4 \cdot 4}{4 \cdot 5} = \frac{15 + 16}{20} = \frac{31}{20} \] **Denominator:** \[ \frac{4}{3} + \frac{5}{3} = \frac{4 + 5}{3} = \frac{9}{3} = 3 \] ### Step 5: Final calculation Now we can substitute back into the expression: \[ \frac{\frac{31}{20}}{3} = \frac{31}{20} \cdot \frac{1}{3} = \frac{31}{60} \] Thus, the final answer is: \[ \frac{31}{60} \] ### Conclusion The value of \((\tan \theta + \cos \theta) / (\cot \theta + \csc \theta)\) is \(\frac{31}{60}\). ---
Doubtnut Promotions Banner Mobile Dark
|

Similar Questions

Explore conceptually related problems

If 5 tan theta =4 then find the value of (5 sin theta - cos theta)/(sin theta + 3 cos theta)

If cos theta=(3)/(5) , then find the value of tan theta, "cosec" theta

Knowledge Check

  • If 5 sin theta=4 , then then the value of (sec theta + 4 cot theta)/(4 tan theta -5 cos theta) is :

    A
    `5//4`
    B
    `3//2`
    C
    1
    D
    2
  • If 5 cos^(2) theta + 1 = 3 sin^(2) theta, 0^(@) lt theta lt 90^(@) , then what is the value of ( tan theta + sec theta)/( cot theta + cosec theta) ?

    A
    ` ( 3 + 2 sqrt3)/(3)`
    B
    `( 2 + 3 sqrt3)/( 3)`
    C
    `( 2 + 3 sqrt3)/( 2)`
    D
    `( 3 + 2 sqrt3)/( 2)`
  • What is ((sin theta +cos theta)(tan theta +cot theta))/(sec theta + cosec theta) equal to ?

    A
    1
    B
    2
    C
    `sin theta`
    D
    `cos theta`
  • Similar Questions

    Explore conceptually related problems

    If sin theta = 4/5 , what is the value of cot theta + cosec theta =?

    if 5cot theta=4, then the value of ((5sin theta-3cos theta)/(sin theta+2cos theta))

    3tan theta+cot theta=5csc theta

    If sec theta=(5)/(4), find the value of (sin theta-2cos theta)/(tan theta-cot theta)

    (cosec theta + sin theta) (sec theta - cos theta) tan theta + cot theta) is equal to