Home
Class 14
MATHS
Find the value of tan 4^@ tan 43^@ ...

Find the value of ` tan 4^@ tan 43^@ tan 47 ^@ tan 86 ^@`

A

`2/3`

B

`1`

C

`1/2`

D

`2`

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( \tan 4^\circ \tan 43^\circ \tan 47^\circ \tan 86^\circ \), we can use some trigonometric identities and properties. ### Step-by-step Solution: 1. **Identify the angles**: We have the angles \( 4^\circ, 43^\circ, 47^\circ, \) and \( 86^\circ \). 2. **Use the identity \( \tan(90^\circ - \theta) = \cot(\theta) \)**: - Notice that \( \tan 47^\circ = \tan(90^\circ - 43^\circ) = \cot 43^\circ \) - Also, \( \tan 86^\circ = \tan(90^\circ - 4^\circ) = \cot 4^\circ \) 3. **Rewrite the expression**: \[ \tan 4^\circ \tan 43^\circ \tan 47^\circ \tan 86^\circ = \tan 4^\circ \tan 43^\circ \cot 43^\circ \cot 4^\circ \] 4. **Apply the cotangent identity**: - Since \( \tan \theta \cot \theta = 1 \), we can simplify: \[ \tan 4^\circ \cot 4^\circ = 1 \quad \text{and} \quad \tan 43^\circ \cot 43^\circ = 1 \] 5. **Combine the results**: \[ \tan 4^\circ \tan 43^\circ \cot 43^\circ \cot 4^\circ = 1 \cdot 1 = 1 \] Thus, the value of \( \tan 4^\circ \tan 43^\circ \tan 47^\circ \tan 86^\circ \) is \( \boxed{1} \).
Promotional Banner

Similar Questions

Explore conceptually related problems

The value of tan 4^@ tan 43^@ tan 47^@ tan 86^@ is

Find the value of tan 1^@ tan 2^@ tan 3^@ ….tan 45^@ …..tan 88^@ tan 89^@

Find the value of (tan 42^@ + tan 18^@)/(1-tan 42^@ tan 18^@)+ tan 300^@

Find the value: 1 + tan15^@tan75^@

Find the value of tan4^(@).tan43^(@).tan47^(@).tan86^(@) .

Find the value of tan20^(@)+2tan50^(@)

The value of tan 6^(@) tan 42^(@) tan 66^(@) tan 78^(@) is

The value of tan 57^(@) - tan 12^(@) - tan 57^(@) tan 12^(@) is

The value of tan 15^(@) tan20^(@) tan 70^(@) tan75 is