Home
Class 14
MATHS
The value of (1)/( sqrt(7) - sqrt(6...

The value of
` (1)/( sqrt(7) - sqrt(6)) - (1)/( sqrt(6) - sqrt(5) ) +(1)/( sqrt(5) -2) - (1)/( sqrt(8) - sqrt(7) ) +(1)/( 3- sqrt(8))` is

A

7

B

0

C

1

D

5

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Similar Questions

Explore conceptually related problems

1/(sqrt7 - sqrt6)

1/(sqrt7 - sqrt6)

1/(sqrt7 - sqrt6)

Solve: (1)/(sqrt(3)-8)-(1)/(sqrt(8)-sqrt(7))

What is the value of (1/(sqrt(9) - sqrt(8)) - 1/(sqrt(8) - sqrt(7)) + 1/(sqrt(7) - sqrt(6)) - 1/(sqrt(6) - sqrt(5)) + 1/(sqrt(5) - sqrt(4))) ?

(1)/(sqrt(7)-sqrt(2))-(1)/(sqrt(7)+sqrt(2))=

The value of {1/((sqrt(6) - sqrt(5))) + 1/((sqrt(5) + sqrt(4))) + 1/((sqrt(4) + sqrt(3))) - 1/((sqrt(3) - sqrt(2))) + 1/((sqrt(2) - 1))} is :

(1)/(2sqrt(7)+sqrt(5))-(1)/(2sqrt(5)+sqrt(7)) simplify