Home
Class 14
MATHS
If (m -a^2)/( b^2 +c^2 ) + (m-b^2)/(...

If ` (m -a^2)/( b^2 +c^2 ) + (m-b^2)/( c^2 +a^2) + (m-c ^2 )/( a^2 +b^2 )=3` , then the value of m is

A

`a^2 +b^2 -c^2`

B

`a^2 +b^2`

C

`a^2 +b^2 +c^2`

D

`a^2 -b^2 -c^2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \[ \frac{m - a^2}{b^2 + c^2} + \frac{m - b^2}{c^2 + a^2} + \frac{m - c^2}{a^2 + b^2} = 3, \] we can use the symmetry of the variables \(a\), \(b\), and \(c\). ### Step-by-Step Solution: 1. **Assume Symmetry**: Since the equation is symmetric in \(a\), \(b\), and \(c\), we can set \(a = b = c\). Let \(a = b = c = k\). 2. **Substitute Values**: Substitute \(a\), \(b\), and \(c\) with \(k\) in the equation: \[ \frac{m - k^2}{k^2 + k^2} + \frac{m - k^2}{k^2 + k^2} + \frac{m - k^2}{k^2 + k^2} = 3. \] This simplifies to: \[ 3 \cdot \frac{m - k^2}{2k^2} = 3. \] 3. **Simplify the Equation**: We can simplify the left-hand side: \[ \frac{3(m - k^2)}{2k^2} = 3. \] 4. **Clear the Denominator**: Multiply both sides by \(2k^2\): \[ 3(m - k^2) = 6k^2. \] 5. **Distribute**: Distributing the \(3\) gives: \[ 3m - 3k^2 = 6k^2. \] 6. **Rearrange the Equation**: Move \(3k^2\) to the other side: \[ 3m = 6k^2 + 3k^2. \] This simplifies to: \[ 3m = 9k^2. \] 7. **Solve for \(m\)**: Divide both sides by \(3\): \[ m = 3k^2. \] ### Conclusion: Thus, the value of \(m\) is \(3a^2\) (since \(k\) was originally set to \(a\)).
Promotional Banner

Similar Questions

Explore conceptually related problems

Let M=[(a,b,c),(d,e,f),(1,1,1)] and N=(M^(2))/(2) . If (a-b)^(2)+(d-e)^(2)=36, (b-c)^(2)+(e-f)^(2)=64, (a-c)^(2)+(d-f)^(2)=100 , then value of |N| is equal to

A B C D E F , a r( A B C)=9c m^2 , a r( D E F)=16 c m^2 . If B C=2. 1 c m , then the measure of E F is 2. 8 c m (b) 4. 2 c m (c) 2. 5 c m (d) 4. 1 c m

If a/b = c/d =e/f = 4, then (m ^(2) a + n^(2) c + p ^(2) e )/( m ^(2) b + n ^(2) d + p ^(2) f )=?

If a tangent to the ellipse (x^(2))/(a^(2))+(y^(2))/(b^(2))=1 with slope m is a normal to the circle x^(2)+y^(2)+4x+1=0, then the maximum value of ab is (A)2m(B)4m(C)m(D)6m

Write the 3m^2=2m^2-9 equation in the form ax^2+bx+c=0 , then write the values of a,b,c .

If the roots of ax^(2)+bx+c=0 are of the form (m)/(m-1) and (m+1)/(m), then the value of (a+b+c)^(2) is

If a + b = 2m^(2), b + c = 6m, a + c = 2 where m is a real number and a le b le c , then which one of the following is correct ?

The line y=mx-((a^(2)-b^(2))m)/(sqrt(a^(2)+b^(2)m^(2))) is normal to the ellise (x^(2))/(a^(2))+(y^(2))/(b^(2))=1 for all values of m belonging to (0,1)(b)(0,oo)(c)R(d) none of these

In a A B C , D and E are points on the sides A B and A C respectively such that D E B C If A D=2 c m , A B=6 c m and A C=9 c m , find A E . (ii) If (A D)/(B D)=4/5 and E C=2. 5 c m , find A E . (iii) If A D=x , D B=x-2 , A E=x+2 and E C=x-1 , find the value of x .