Home
Class 14
MATHS
If m=- 4 , n=-2 then the value of m...

If ` m=- 4 , n=-2` then the value of `m^3 - 3m^2 + 3m + 3n + 3n^2 + n^3` is

A

`-126`

B

`124`

C

`-124`

D

`126`

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of the expression \( m^3 - 3m^2 + 3m + 3n + 3n^2 + n^3 \) given \( m = -4 \) and \( n = -2 \), we can substitute the values of \( m \) and \( n \) into the expression and simplify step by step. ### Step-by-Step Solution: 1. **Substitute the values of m and n into the expression:** \[ m^3 - 3m^2 + 3m + 3n + 3n^2 + n^3 = (-4)^3 - 3(-4)^2 + 3(-4) + 3(-2) + 3(-2)^2 + (-2)^3 \] 2. **Calculate each term:** - Calculate \( (-4)^3 \): \[ (-4)^3 = -64 \] - Calculate \( -3(-4)^2 \): \[ -3(-4)^2 = -3 \times 16 = -48 \] - Calculate \( 3(-4) \): \[ 3(-4) = -12 \] - Calculate \( 3(-2) \): \[ 3(-2) = -6 \] - Calculate \( 3(-2)^2 \): \[ 3(-2)^2 = 3 \times 4 = 12 \] - Calculate \( (-2)^3 \): \[ (-2)^3 = -8 \] 3. **Combine all the calculated values:** \[ -64 - 48 - 12 - 6 + 12 - 8 \] 4. **Perform the addition and subtraction step by step:** - First, combine the negative terms: \[ -64 - 48 - 12 - 6 - 8 = -138 \] - Now add the positive term: \[ -138 + 12 = -126 \] 5. **Final result:** \[ m^3 - 3m^2 + 3m + 3n + 3n^2 + n^3 = -126 \] ### Conclusion: The value of the expression is \(-126\).
Promotional Banner

Similar Questions

Explore conceptually related problems

If 6m-n=3m+7n , then find the value of (m^(2))/(n^(2))

If m:n=5:4 , then find the value of the ratio (5m+3n):(3m+n)