Home
Class 14
MATHS
The numerical value of ( cos^2 45^@ ...

The numerical value of ` ( cos^2 45^@ ) /( sin ^2 60 ^@) +( cos ^2 60^@ )/( sin ^2 45 ^@ ) -(tan ^2 30 ^@ )/( cot^2 45^@ ) -( sin^2 30 ^@ )/( cot^2 30^@)` is

A

`1 (1)/(4)`

B

`3/4`

C

`1//4`

D

`1/2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given expression step by step, we will use trigonometric identities and values. ### Given Expression: \[ \frac{\cos^2 45^\circ}{\sin^2 60^\circ} + \frac{\cos^2 60^\circ}{\sin^2 45^\circ} - \frac{\tan^2 30^\circ}{\cot^2 45^\circ} - \frac{\sin^2 30^\circ}{\cot^2 30^\circ} \] ### Step 1: Calculate the trigonometric values - \(\cos 45^\circ = \frac{1}{\sqrt{2}}\) - \(\sin 60^\circ = \frac{\sqrt{3}}{2}\) - \(\cos 60^\circ = \frac{1}{2}\) - \(\sin 45^\circ = \frac{1}{\sqrt{2}}\) - \(\tan 30^\circ = \frac{1}{\sqrt{3}}\) so \(\tan^2 30^\circ = \frac{1}{3}\) - \(\cot 45^\circ = 1\) so \(\cot^2 45^\circ = 1\) - \(\sin 30^\circ = \frac{1}{2}\) so \(\sin^2 30^\circ = \frac{1}{4}\) - \(\cot 30^\circ = \sqrt{3}\) so \(\cot^2 30^\circ = 3\) ### Step 2: Substitute the values into the expression Now substituting these values into the expression: \[ \frac{\left(\frac{1}{\sqrt{2}}\right)^2}{\left(\frac{\sqrt{3}}{2}\right)^2} + \frac{\left(\frac{1}{2}\right)^2}{\left(\frac{1}{\sqrt{2}}\right)^2} - \frac{\frac{1}{3}}{1} - \frac{\frac{1}{4}}{3} \] ### Step 3: Simplify each term 1. \(\frac{\left(\frac{1}{\sqrt{2}}\right)^2}{\left(\frac{\sqrt{3}}{2}\right)^2} = \frac{\frac{1}{2}}{\frac{3}{4}} = \frac{1}{2} \cdot \frac{4}{3} = \frac{2}{3}\) 2. \(\frac{\left(\frac{1}{2}\right)^2}{\left(\frac{1}{\sqrt{2}}\right)^2} = \frac{\frac{1}{4}}{\frac{1}{2}} = \frac{1}{4} \cdot 2 = \frac{1}{2}\) 3. \(-\frac{1}{3}\) 4. \(-\frac{\frac{1}{4}}{3} = -\frac{1}{12}\) ### Step 4: Combine the results Now combining all the results: \[ \frac{2}{3} + \frac{1}{2} - \frac{1}{3} - \frac{1}{12} \] ### Step 5: Find a common denominator The common denominator for \(3, 2, 3, 12\) is \(12\): - \(\frac{2}{3} = \frac{8}{12}\) - \(\frac{1}{2} = \frac{6}{12}\) - \(-\frac{1}{3} = -\frac{4}{12}\) - \(-\frac{1}{12} = -\frac{1}{12}\) ### Step 6: Combine the fractions Now, adding these fractions together: \[ \frac{8}{12} + \frac{6}{12} - \frac{4}{12} - \frac{1}{12} = \frac{8 + 6 - 4 - 1}{12} = \frac{9}{12} = \frac{3}{4} \] ### Final Answer: The numerical value of the expression is \(\frac{3}{4}\).
Promotional Banner

Similar Questions

Explore conceptually related problems

The value of (4cos^2 60^@ + 3 sec^2 30^@ -cot^2 45^@)/(cos^2 60^@ + sin^2 60^@) is:

The value of cos^2 30^@ + sin^2 60^@ + tan^2 45^@ + sec^2 60^@ + cos 0^@ is

sin^2 60^@+cos^2 30^@ + cot^2 45^@ + sec^2 60 ^@=?

(sin ^ (2) 30 ^ (@) cos ^ (2) 45 ^ (@) + 4tan ^ (2) 30 ^ (@) + (1) / (2) sin ^ (2) 90 ^ (@) + (1) / (8) cot ^ (2) 60 ^ (@)) =?

sin30 ^ (@) sin ^ (2) (60) ^ (@) + 3cos60 ^ (@) tan45 ^ (@) =

sin^(2) 60^(@) + 2 tan 45^(@) - cos^(2) 30^(@)

Evaluate : ( 5 cos ^(2) 60^(@) + 4 sec ^(2) 30^(@) - tan ^(2) 45^(@))/( sin ^(2) 30^(@) + cos ^(2) 30^(@))

Find the value of 2 tan^2 45^@ +cos^2 30^@-sin^2 60^@ .