Home
Class 14
MATHS
If x+(1)/(x) =4 , " then " x^(3) + (1)/...

If ` x+(1)/(x) =4 , " then " x^(3) + (1)/(x^(3))` is equal to :

A

64

B

50

C

52

D

40

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( x^3 + \frac{1}{x^3} \) given that \( x + \frac{1}{x} = 4 \). ### Step-by-Step Solution: 1. **Start with the given equation**: \[ x + \frac{1}{x} = 4 \] 2. **Cube both sides**: We will use the identity for the cube of a sum: \[ (a + b)^3 = a^3 + b^3 + 3ab(a + b) \] Here, let \( a = x \) and \( b = \frac{1}{x} \). Therefore, we have: \[ \left(x + \frac{1}{x}\right)^3 = x^3 + \frac{1}{x^3} + 3\left(x \cdot \frac{1}{x}\right)\left(x + \frac{1}{x}\right) \] 3. **Substituting the known values**: From the previous step, substituting \( x + \frac{1}{x} = 4 \): \[ 4^3 = x^3 + \frac{1}{x^3} + 3(1)(4) \] 4. **Calculate \( 4^3 \)**: \[ 4^3 = 64 \] 5. **Substituting back into the equation**: \[ 64 = x^3 + \frac{1}{x^3} + 12 \] 6. **Isolate \( x^3 + \frac{1}{x^3} \)**: \[ x^3 + \frac{1}{x^3} = 64 - 12 \] \[ x^3 + \frac{1}{x^3} = 52 \] ### Final Answer: Thus, the value of \( x^3 + \frac{1}{x^3} \) is \( \boxed{52} \).
Promotional Banner