Home
Class 14
MATHS
If a^(3) - b^(3)= 210 and a-b=5 , then...

If `a^(3) - b^(3)= 210 and a-b=5 , ` then `(a+b)^(2)-ab` is equal to :

A

42

B

32

C

38

D

52

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \((a+b)^2 - ab\) given that \(a^3 - b^3 = 210\) and \(a - b = 5\). ### Step 1: Use the identity for the difference of cubes We know the identity for the difference of cubes: \[ a^3 - b^3 = (a - b)(a^2 + ab + b^2) \] Given \(a^3 - b^3 = 210\) and \(a - b = 5\), we can substitute these values into the identity. ### Step 2: Substitute the known values Substituting \(a - b = 5\) into the identity gives: \[ 210 = 5(a^2 + ab + b^2) \] ### Step 3: Simplify the equation Dividing both sides by 5: \[ a^2 + ab + b^2 = \frac{210}{5} = 42 \] ### Step 4: Use the square of a sum identity We know that: \[ (a + b)^2 = a^2 + 2ab + b^2 \] We can express \(a^2 + b^2\) in terms of \(a + b\) and \(ab\): \[ a^2 + b^2 = (a + b)^2 - 2ab \] ### Step 5: Substitute into the equation Now, we can substitute \(a^2 + b^2\) into the equation we derived: \[ a^2 + ab + b^2 = (a + b)^2 - 2ab + ab = (a + b)^2 - ab \] So we have: \[ (a + b)^2 - ab = 42 \] ### Step 6: Conclusion Thus, the value of \((a + b)^2 - ab\) is: \[ \boxed{42} \]
Promotional Banner