Home
Class 14
MATHS
If a-(1)/(a) = 3 , " then " a^6 + (1)/(...

If ` a-(1)/(a) = 3 , " then " a^6 + (1)/(a^6)` is equal to :

A

729

B

996

C

1331

D

1298

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( a - \frac{1}{a} = 3 \) and find \( a^6 + \frac{1}{a^6} \), we can follow these steps: ### Step 1: Square the given equation Start with the equation: \[ a - \frac{1}{a} = 3 \] Square both sides: \[ \left(a - \frac{1}{a}\right)^2 = 3^2 \] This simplifies to: \[ a^2 - 2 \cdot a \cdot \frac{1}{a} + \frac{1}{a^2} = 9 \] \[ a^2 - 2 + \frac{1}{a^2} = 9 \] Adding 2 to both sides gives: \[ a^2 + \frac{1}{a^2} = 11 \] ### Step 2: Find \( a^4 + \frac{1}{a^4} \) Now, we will square \( a^2 + \frac{1}{a^2} \): \[ \left(a^2 + \frac{1}{a^2}\right)^2 = 11^2 \] This expands to: \[ a^4 + 2 + \frac{1}{a^4} = 121 \] Subtracting 2 from both sides gives: \[ a^4 + \frac{1}{a^4} = 119 \] ### Step 3: Find \( a^6 + \frac{1}{a^6} \) Next, we can use the identity: \[ a^6 + \frac{1}{a^6} = (a^4 + \frac{1}{a^4})(a^2 + \frac{1}{a^2}) - (a^2 + \frac{1}{a^2}) \] Substituting the values we found: \[ a^6 + \frac{1}{a^6} = (119)(11) - 11 \] Calculating \( 119 \times 11 \): \[ 119 \times 11 = 1309 \] Now, subtract 11: \[ a^6 + \frac{1}{a^6} = 1309 - 11 = 1298 \] ### Final Answer Thus, the value of \( a^6 + \frac{1}{a^6} \) is: \[ \boxed{1298} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If a - ( 1)/( a) = 2 , then a^(6) + ( 1)/( a^(6) is equal to :

(36)^(1/6) is equal to

If (a-(1)/(a))^(2)=3, then a^(6)+(1)/(a^(6))=?

The value of (1/6 )^0 is equal to :

4 xx 6(1/3) is equal to ______

If x+((1)/(x)) =p , then x^(6) +((1)/(x^(6))) equals