Home
Class 14
MATHS
PA and PB are tangents to a circle with ...

PA and PB are tangents to a circle with centre 0, from a point P outside the circle, and A and B are point on the circle. If `angleAPB = 30^(@)`, then `angleOAB` is equal to:

A

`25^(@)`

B

`40^(@)`

C

`15^(@)`

D

`50^(@)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the angle \( \angle OAB \) given that \( \angle APB = 30^\circ \), we can follow these steps: ### Step 1: Understand the Geometry We have a circle with center \( O \) and point \( P \) outside the circle from which two tangents \( PA \) and \( PB \) touch the circle at points \( A \) and \( B \) respectively. The angle \( \angle APB \) is given as \( 30^\circ \). ### Step 2: Identify Right Angles Since \( PA \) and \( PB \) are tangents to the circle, the radius \( OA \) is perpendicular to the tangent \( PA \) at point \( A \), and the radius \( OB \) is perpendicular to the tangent \( PB \) at point \( B \). Therefore, we have: \[ \angle OAP = 90^\circ \quad \text{and} \quad \angle OBP = 90^\circ \] ### Step 3: Analyze Quadrilateral \( OAPB \) In quadrilateral \( OAPB \), the sum of the angles is \( 360^\circ \). We can express this as: \[ \angle OAP + \angle APB + \angle OBP + \angle OAB = 360^\circ \] Substituting the known values: \[ 90^\circ + 30^\circ + 90^\circ + \angle OAB = 360^\circ \] This simplifies to: \[ 210^\circ + \angle OAB = 360^\circ \] ### Step 4: Solve for \( \angle OAB \) Now, we can solve for \( \angle OAB \): \[ \angle OAB = 360^\circ - 210^\circ = 150^\circ \] ### Step 5: Analyze Triangle \( AOB \) In triangle \( AOB \), we know that: \[ \angle AOB + \angle OAB + \angle OBA = 180^\circ \] Let \( \angle OAB = x \) and \( \angle OBA = x \) (since they are equal). Then we have: \[ 150^\circ + x + x = 180^\circ \] This simplifies to: \[ 150^\circ + 2x = 180^\circ \] ### Step 6: Solve for \( x \) Now, we can solve for \( x \): \[ 2x = 180^\circ - 150^\circ = 30^\circ \] \[ x = \frac{30^\circ}{2} = 15^\circ \] ### Conclusion Thus, the angle \( \angle OAB \) is: \[ \angle OAB = 15^\circ \]
Promotional Banner

Similar Questions

Explore conceptually related problems

PA and PB are tangents to a circle with centre O, from a point P outside the circle, and A and B are points on the circle. If angle APB= 40^@ , then angle OAB is equal to: PA तथा PB एक वृत्त के बाहर स्थित बिंदु P से वृत्त की स्पर्श रेखाएं हैं जिसका केंद्र O है तथा A और B वृत्त पर स्थित बिंदु हैं | यदि angle APB= 40^@ है, तो angle OAB का मान ज्ञात करें |

PA and PB are two tangents to a circle with centre 0. from a point P outside the circle. A and B are points on the circle. If angleAPB= 70^@ then angleOAB is equal to:

PA and PB are two tangents to a circle with centre O, from a point P outside the circle. A and B are points on the circle. If angleAPB =100^(@) , then OAB is equal to:

PA and PB are tangents to a circle with centre O, from a point P outside the circle and A and B are points on the circle. If /_ APB = 30^(@) , then /_ OAB is equal to :

PA and PB are two tangents to a circle with centre O, from a point P outside the circle. A and B are points on the circle. If angle OAB=20^@ , then angle APB is equal to: PA तथा PB केंद्र O वाले वृत के बाहर स्थित बिंदु P से वृत्त पर खींची गयी दो स्पर्श रेखाएं हैं | A और B वृत्त पर स्थित बिंदु हैं | यदि angle OAB=20^@ है, तो angle APB का मान कया होगा ?

PA and PB are two tangents to a circle with centre O, from a point P outside the circle A and B are points on the circle. If angle APB=86^@ , then angle OAB is equal to: PA तथा PB केंद्र O वाले वृत के बाहर स्थित बिंदु P से वृत्त पर खींची गयी दो स्पर्श रेखाएं हैं | A और B वृत्त पर स्थित बिंदु हैं | यदि angle APB=86^@ है, तो angle OAB का ज्ञात करें |

PA and PB are two tangents to a circle with centre O, from a point P outside the circle A and B are points on the circle. If angle OAB=38^@ , then angle APB is equal to: PA तथा PB केंद्र O वाले वृत के बाहर स्थित बिंदु P से वृत्त पर खींची गयी दो स्पर्श रेखाएं हैं | A और B वृत्त पर स्थित बिंदु हैं | यदि angle OAB=38^@ , है, तो angle APB का ज्ञात करें |

PA and PB are the tangents to a circle with centre O, from a point P outside the circle. A and B are the points on the circle. If angle APB= 72^@ ,then angle OAB is equal to: PA तथा PB एक वृत्त पर वृत्त के बाहर स्थित बिंदु P से खींची गयी स्पर्श रेखाएं हैं जिसका केंद्र O है | A तथा B वृत्त पर स्थित बिंदु हैं | यदि angle APB= 72^@ है, तो angle OAB का मान ज्ञात करें |

Tangents from a Point Outside the circle.