Home
Class 14
MATHS
If x-y =4 and xy=45 , then the value of ...

If x-y =4 and xy=45 , then the value of `(x^3 - y^3)` is :

A

82

B

604

C

151

D

822

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we start with the equations provided: 1. **Given Equations**: - \( x - y = 4 \) (Equation 1) - \( xy = 45 \) (Equation 2) 2. **Using the Formula for \( x^3 - y^3 \)**: The formula for the difference of cubes is: \[ x^3 - y^3 = (x - y)(x^2 + xy + y^2) \] We already have \( x - y = 4 \). Now we need to find \( x^2 + xy + y^2 \). 3. **Finding \( x^2 + y^2 \)**: We can express \( x^2 + y^2 \) using the identity: \[ x^2 + y^2 = (x - y)^2 + 2xy \] Substituting the values from our equations: - \( (x - y)^2 = 4^2 = 16 \) - \( 2xy = 2 \times 45 = 90 \) Therefore: \[ x^2 + y^2 = 16 + 90 = 106 \] 4. **Calculating \( x^2 + xy + y^2 \)**: Now we can find \( x^2 + xy + y^2 \): \[ x^2 + xy + y^2 = x^2 + y^2 + xy = 106 + 45 = 151 \] 5. **Substituting Back into the Formula**: Now we substitute back into the formula for \( x^3 - y^3 \): \[ x^3 - y^3 = (x - y)(x^2 + xy + y^2) = 4 \times 151 \] 6. **Final Calculation**: \[ x^3 - y^3 = 604 \] Thus, the value of \( x^3 - y^3 \) is **604**.
Promotional Banner

Similar Questions

Explore conceptually related problems

If (x+y)=8 and xy=15 then the value of (x^3-y^3) is :

If x+y=3 and x-y=1 , then the value of xy is

If x+y=5 and xy=6 , then the value of x^(3)+y^(3) is

If (x+y)=13 and xy=36 , then the value of (x^(3)+y^(3)) is :

If x + y = 7 and xy = 10, then the value of x^3+y^3 is: यदि x + y = 7 तथा xy = 10 है, तो x^3+y^3 का मान क्या होगा ?

If x-y=4 and xy=21, find the value of x^(3)-y^(3)

If x:y = 3:2 and x+y = 90, then the value of (x-y) is: यदि x:y = 3:2 और x+y = 90 है, तो (x-y) का मान है: