Home
Class 14
MATHS
If x^(2a) = y^(2b) = Z^(2c) ne 0 and x^...

If ` x^(2a) = y^(2b) = Z^(2c) ne 0 and x^2 =yz `, then the value of `(ab+ bc + ca)/(bc)` is :

A

3

B

3bc

C

3ab

D

3ac

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \((ab + bc + ca) / (bc)\) given the conditions \(x^{2a} = y^{2b} = z^{2c} \neq 0\) and \(x^2 = yz\). ### Step 1: Set the common value Let \(k = x^{2a} = y^{2b} = z^{2c}\). This means: - \(x^{2a} = k\) - \(y^{2b} = k\) - \(z^{2c} = k\) ### Step 2: Express \(x\), \(y\), and \(z\) in terms of \(k\) From the equations, we can express \(x\), \(y\), and \(z\) as follows: - \(x = k^{1/(2a)}\) - \(y = k^{1/(2b)}\) - \(z = k^{1/(2c)}\) ### Step 3: Use the second condition \(x^2 = yz\) Substituting the expressions for \(x\), \(y\), and \(z\) into the second condition: \[ x^2 = (k^{1/(2a)})^2 = k^{1/a} \] \[ yz = k^{1/(2b)} \cdot k^{1/(2c)} = k^{(1/(2b) + 1/(2c))} \] Setting these equal gives: \[ k^{1/a} = k^{(1/(2b) + 1/(2c))} \] ### Step 4: Equate the exponents Since \(k \neq 0\), we can equate the exponents: \[ \frac{1}{a} = \frac{1}{2b} + \frac{1}{2c} \] ### Step 5: Find a common denominator To combine the right side, we find a common denominator: \[ \frac{1}{a} = \frac{c + b}{2bc} \] Cross-multiplying gives: \[ 2bc = a(b + c) \] ### Step 6: Rearranging the equation From \(2bc = a(b + c)\), we can express \(a\) in terms of \(b\) and \(c\): \[ a = \frac{2bc}{b+c} \] ### Step 7: Substitute \(a\) into the expression \((ab + bc + ca)\) Now we can substitute \(a\) into the expression we want to evaluate: \[ ab + bc + ca = \left(\frac{2bc}{b+c}\right)b + bc + \left(\frac{2bc}{b+c}\right)c \] This simplifies to: \[ \frac{2b^2c}{b+c} + bc + \frac{2bc^2}{b+c} \] Combining the terms gives: \[ \frac{2b^2c + bc(b+c) + 2bc^2}{b+c} = \frac{2b^2c + b^2c + bc^2 + 2bc^2}{b+c} = \frac{3bc(b+c)}{b+c} = 3bc \] ### Step 8: Divide by \(bc\) Now, we can find the final value: \[ \frac{ab + bc + ca}{bc} = \frac{3bc}{bc} = 3 \] ### Final Answer Thus, the value of \(\frac{ab + bc + ca}{bc}\) is \(3\).
Promotional Banner

Similar Questions

Explore conceptually related problems

If a+b+c=0 , then the value of (a^2 + b^2 +c^2)/(bc+ca+ab) is….

If a^(2)+ab+b^(2) = b^(2) +bc +c^(2) where a ne b ne c then find the value of a+b+c .

If ab + bc + ca = 0 , then the value of 1/(a^2 - bc) + 1/(b^2 - ca) + 1/(c^2 - ab) will be :