Home
Class 12
MATHS
The function f(x) = sin ^(4)x+ cos ^(4)x...

The function `f(x) = sin ^(4)x+ cos ^(4)x ` increases, if

Promotional Banner

Similar Questions

Explore conceptually related problems

The function f(x)=sin^(4)x+cos^(4)x increasing if

If f(x) =sin^(4)x+cos^(4)x increases, if

Show that the function f(x) =sin^(4)x+cos^(4)x is increasing in (pi)/(4) lt x lt (3pi)/(8) .

The function f(x)=sin^4x +cos ^4 x increases if

The function f(x)=sin^4x +cos ^4 x increases if

Find the intervals in which the function f(x) = sin^(4) x + cos^(4) x AA x in [0, pi//2] is increasing and decreasing.

True or False statements: Maximum value of the function f(x) = sin^4 x + cos^4 x is 2 .

The function f(x)=(sin^(4)x+cos^(4)x)/(x+tan x) is :

The function (sin^(4)x+cos^(4)x)/(x+tan x) is

The function f(x)=sin^4x+cos^4x increasing if :