Home
Class 12
MATHS
If A,B,C are positive acute angles and s...

If `A,B,C` are positive acute angles and `sin(B+C-A)=cos(C+A-B)=tan(A+B-C)=1` then `A,B,C` are

Promotional Banner

Similar Questions

Explore conceptually related problems

If A,B,C are qcute angles such that sin(B+C-A)=cos(C+A-B)=tan(A+B-C)=1 then (A,B,C)=

If A,B,C are positive acute angles and tan A=4/7 and tan B=1/7,tan C=1/8 prove that A+B+C=45^@

If A,B,C are positive acute angles and tan A =4/7, tanB =1/7, tanC=1/8,"prove that" A+B+C = 45^(@)

If a,B,C are positive acute angles and tan A=(4)/(7),tan B=(1)/(7),tan C=(1)/(8), prove that A+B+C=45

If A,B,C are acute angles , tan A=1/2 , tan B=1//5 , tan C=1//8 , " then " A+B+C=

If A,B,C are the angles of an acute angled triangle and cos(B+C-A)=0, sin (C+A-B)=(sqrt(3))/2 , find the values of A,B , and C.

Each angle A, B,C of the triangle ABC is acute and sin (B+C-A)=1 , tan (C+A-B)= sqrt(3) , find A,B and C.