Home
Class 12
MATHS
If omega pm 1 is a cube root of unity, s...

If `omega pm` 1 is a cube root of unity, show that `(a + b omega + c omega^(2))/(b + c omega + a omega^(2))+ (a + b omega + c omega^(2))/(c + a omega + b omega^(2)) = -1`

Promotional Banner

Similar Questions

Explore conceptually related problems

If omega pm 1 is a cube root of unity, the value of (a + b omega + c omega^(2))/(b + c omega + a omega^(2))+ (a + b omega + c omega^(2))/(c + a omega + b omega^(2)) = ?

If omega pm 1 is a cube root of unity, show that (1 - omega + omega^(2))^(6) + (1 + omega - omega^(2))^(6) = 128

Prove the following (a + b omega + c omega^(2))/(c + a omega + b omega^(2)) + (a + b omega + c omega^(2))/(b + c omega + a omega^(2)) = -1

If omega is a complex cube root of unity , then the value of (a + b omega + c omega^(2))/(c + a omega + b omega^(2)) + (a + b omega + comega^(2))/(b + c omega + a omega^(2)) is

Prove the following (a + b omega + c omega^(2))/(b + c omega + a omega^(2))= omega

If omega is a complex cube root of unity, show that (a+b) + (a omega +b omega^2 )+(a omega^2 +b omega ) =0

If omega is a complex cube root of unity, show that frac{a+b omega+c omega^2}{c+a omega+b omega^2} = omega^2

If 1 , omega , omega^(2) are the cube roots of unity then the values ((a+b omega+c omega^(2))/(c+a omega+b omega^(2))) + ((a+b omega+c omega^(2))/(b+c omega+a omega^(2))) = (A) 1 (B) 0 (C) -1 (D) None of these