Home
Class 11
MATHS
Prove that the general solution of cos"t...

Prove that the general solution of `cos"theta"=cos"alpha"` is given by : `theta=2npi+-alpha,` where `n in Zdot`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that the general solution of cos theta=cos alpha is given by :theta=2n pi+-alpha where n in Z.

Prove that the general solution of cos theta=cos alpha is given by theta=2n pi+-alpha; where quad !=psi lonZ

Prove that the general solution of tan"theta"=tan"alpha" is given by : theta=npi+alpha,n in Zdot

Prove that the general solution of tan theta=tan alpha is given by : theta=n pi+alpha,n in Z

Prove that the general solution of sin theta=sin alpha is given by : theta=n pi+(-1)^(n)alpha,n in Z

Prove that general solution of sin theta=sin alpha is given by theta=n pi+(-1)^(n)alpha;where!=psi lon Z

Prove that general solution of tan theta=tan alpha is given by theta=n pi+alpha;!=psi lon Z

Prove that the general solution of sin θ= sin α, is given by : theta=npi+(-1)^nalpha,n in Zdot

Prove that: cos^2theta=cos^2alpha then theta=npi+-alpha,n in Z

Prove that: cos^(2)theta=cos^(2)alpha then theta=n pi+-alpha,n in Z