Home
Class 12
MATHS
x+2y+z=4 -x+y+z=0 x-3y+z=4...

x+2y+z=4
-x+y+z=0
x-3y+z=4

Promotional Banner

Similar Questions

Explore conceptually related problems

Solve x-y+z=4 , x+y+z=2 , 2x+y-3z=0

Value of |[x+y, z,z ],[x, y+z, x],[y, y, z+x]|, where x ,y ,z are nonzero real number, is equal to a. x y z b. 2x y z c. 3x y z d. 4x y z

Value of [[x+y, z,z ],[x, y+z, x],[y, y, z+x]], where x ,y ,z are nonzero real number, is equal to x y z b. 2x y z c. 3x y z d. 4x y z

Value of [[x+y, z,z ],[x, y+z, x],[y, y, z+x]], where x ,y ,z are nonzero real number, is equal to x y z b. 2x y z c. 3x y z d. 4x y z

Value of |[x+y, z,z ],[x, y+z, x],[y, y, z+x]|, where x ,y ,z are nonzero real number, is equal to a. x y z b. 2x y z c. 3x y z d. 4x y z

The equation 2x+y-4z=0, x-2y+3z=0 , x-y+z=0 have

Using matrices, solve the following system of equations for x,y and z. 3x-2y+3z=8 , 2x+y-z=1 , 4x-3y+2z=4

If the origin and the point P(2,3,4),Q(,1,2,3)R (x,y,z) are coplanar then: a) x-2y-z=0 b) x+2y+z=0 c) x-2y+z=0 d) 2x-2y+z=0

Prove the identities: |[z, x, y],[ z^2,x^2,y^2],[z^4,x^4,y^4]|=|[x, y, z],[ x^2,y^2,z^2],[x^4,y^4,z^4]|=|[x^2,y^2,z^2],[x^4,y^4,z^4],[x, y, z]| =x y z (x-y)(y-z)(z-x)(x+y+z)