Home
Class 12
MATHS
" (i) "log(x+sqrt(x^(2)-1))/(x-sqrt(x^(2...

" (i) "log(x+sqrt(x^(2)-1))/(x-sqrt(x^(2)-1))

Promotional Banner

Similar Questions

Explore conceptually related problems

Differentiate log((x+sqrt(x^(2)-1))/(x-sqrt(x^(2)-1)))

log(x+sqrt(1+x^(2)))

If x=(1)/(2)(sqrt(7)+(1)/(sqrt(7))) ,then , log_(27)((sqrt(x^(2)-1))/(x-sqrt(x^(2)-1))) is equal to

(log(x+sqrt(x^(2)+1)))/(x) is

int((log(x+sqrt(1+x^(2))))/(sqrt(1+x^(2))))

int(log(x+sqrt(1+x^(2))))/(sqrt(1+x^(2)))dx=

If int(log(x+sqrt(1+x^(2))))/(sqrt(1+x^(2)))dx =(gof)(x)+c then

[" (v) Differentiate "log[(sqrt(1+x^(2))+x)/(sqrt(1+x^(2))-x)]" w.r.t."],[cos(log x)]

The value of int_(-1)^(1) (log(x+sqrt(1+x^(2))))/(x+log(x+sqrt(1+x^(2))))f(x) dx-int_(-1)^(1) (log(x +sqrt(1+x^(2))))/(x+log(x+sqrt(1+x^(2))))f(-x)dx ,