Home
Class 8
MATHS
Simplify the expressions and evaluate th...

Simplify the expressions and evaluate them as directed:
(i) `x(x-3)+2` for `x=1`
(ii) `3y(2y-7)-3(y-4)-63` for `y=2`

Text Solution

Verified by Experts

The correct Answer is:
(i) `x(x-3)+2 = x^2-3x+2`
At `x=1, (1)^2-3(1)+2= 1-3+2 = 0`

(ii)`3y(2y-7)-3(y-4)-63 = 6y^2 - 21y -3y+12-63`
`6y^2-24y-51`
At `y=2, 6(2)^2-24(2)-51 = 24-48-51 = -75`
At `y = -2, 6(-2)^2-24(-2)-51 = 24+48-51 = 21`

(i) `x(x-3)+2 = x^2-3x+2`
At `x=1, (1)^2-3(1)+2= 1-3+2 = 0`

(ii)`3y(2y-7)-3(y-4)-63 = 6y^2 - 21y -3y+12-63`
`6y^2-24y-51`
At `y=2, 6(2)^2-24(2)-51 = 24-48-51 = -75`
At `y = -2, 6(-2)^2-24(-2)-51 = 24+48-51 = 21`
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • ALGEBRAIC EXPRESSIONS AND IDENTITIES

    NCERT|Exercise EXERCISE 9.1|4 Videos
  • ALGEBRAIC EXPRESSIONS AND IDENTITIES

    NCERT|Exercise EXERCISE 9.5|8 Videos
  • ALGEBRAIC EXPRESSIONS AND IDENTITIES

    NCERT|Exercise EXERCISE 9.3|5 Videos
  • COMPARING QUANTITIES

    NCERT|Exercise EXERCISE 8.1|6 Videos

Similar Questions

Explore conceptually related problems

Simplify the expression by combining the like terms: 7x^3 -3x^2y + xy^2 + x^2y - y^3

Find the parametric equation of the circles : (i) 2x^(2) + 2y^(2) - 5x - 7y - 3 = 0 (ii) 3x^(2) + 3y^(2) + 4x - 6y - 4 = 0 .

Find the parametric representation of the circles : (i) 3x^(2) + 3y^(2) = 4 . (ii) ( x - 2)^(2) + (y - 3)^(2) = 5 .

Find each of the following products: (i) (4x - 7y) (4x - 7y) (ii) (3x^(2) - 4y^(2)) (3x^(2) - 4y^(2))

If x=2 and y=3, then find the values of (i) (2x+3y)/(4x-3y) " "(ii) (2x^(2)-7x+2y)/(2y^(2)-7y+2x)

Simplify the expression : [(x^3 + y^3)/((x - y)^2 + 3xy)] div [((x + y)^2 - 3xy)/(x^3 - y^3)] xx (xy)/(x^2 - y^2)

Find each of the following products: (i) (4x + 5y) (4x - 5y) (ii) (3x^(2) + 2y^(2)) (3x^(2) - 2y^(2))

Simplify the using the distibutive law. - 5x ^(2) y ^(2) ( 3x ^(3) - 4x ^(2) y ^(2) - 2 y ^(3))

If x =3 and y=1, then find the values of (i) 3x-2y" "(ii) (22)/(3)x^(2)-(7)/(2)y^(2)

Find x and y if: (i) (x + 1,y-2) = (3,1) (ii) (x + 2,4)= (5,2x+y)